首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have studied some of the electrophysiological properties of 2 1/2- to 4-day-old (stage 14-22) chick embryos. Using a recently developed two-dimensional vibrating probe, large currents were found to exit the posterior intestinal portal (p.i.p.) during the period of tail gut reduction. During this period, epithelial cells lining cloacal regions of the hindgut are dying, thus creating a low-resistance pathway for current flow out of the embryo. Currents entered the intact epithelium over other regions of the embryo. The outward currents at the p.i.p. were first detected at stage 15 and reached their average maximum current density of 112 +/- 10 microA/cm2 at stage 17. After stage 17, the magnitude of the currents decreased, dropping to 16 +/- 0.3 microA/cm2 by stage 22. The currents were reversibly reduced by about 50% when Na+ was replaced by choline in the bathing solution. The magnitude of the currents leaving the p.i.p. suggested the existence of a measurable intraembryonic voltage gradient. The transepithelial potential (TEP) of stage 14-21 embryos was measured lateral to the neural tube through the dorsal ectoderm. For all stages, the combined average TEP was 16 +/- 0.5 mV. Differences in the TEP between various regions of the embryo were used to calculate an intraembryonic voltage gradient. At stage 14, before outward current was found at the p.i.p., no significant intraembryonic voltage gradient was detected. At stage 17, when the outward current at the p.i.p. was maximum, a voltage gradient of 21 +/- 5 mV/mm (mean +/- SEM; N = 6) was measured in the caudal end of the embryo. This gradient in some cases was as steep as 33 mV/mm. This is well above the minimum level needed to affect the direction of embryonic cell migration in vitro. We hypothesize that this endogenous electrical field acts as a directional cue for neural crest cell movements in the developing chick embryo.  相似文献   

2.
Ascidians are among the most distant chordate relatives of the vertebrates. However, ascidians share many features with vertebrates including a notochord and hollow dorsal nerve cord. A screen for N-ethyl-N-nitrosourea (ENU)-induced mutations affecting early development in the ascidian Ciona savignyi resulted in the isolation of a number of mutants including the complementing notochord mutants chongmague and chobi. In chongmague embryos the notochord fails to develop, and the notochord cells instead adopt a mesenchyme-like fate. The failure of notochord development in chongmague embryos results in a severe truncation of tail, although development of the tail muscles and caudal nerve tracts appears largely normal. Chobi embryos also have a truncation of the tail stemming from a disruption of the notochord. However, in chobi embryos the early development of the notochord appears normal and defects occur later as the notochord attempts to extend and direct elongation of the tail. We find in chobi tailbud embryos that the notochord is often bent, with cells clumped together, rather than extended as a column. These results provide new information on the function and development of the ascidian notochord. In addition, the results demonstrate how the unique features of ascidians can be used in genetic analysis of morphogenesis.  相似文献   

3.
C M Griffith  M J Wiley 《Teratology》1991,43(3):217-224
The present study describes the teratogenic effects of retinoic acid (RA) on the development of the chick tail bud. Chick embryos were recovered 48 hours after treatment at HH stages 11 to 16 with various dosages of RA by subblastodermal injection. At the gross level, RA treatment resulted in varying degrees of caudal regression, scoliosis, limb malformations, and open posterior neuropores among the survivors. Histological examination of tail buds from treated embryos revealed defects which included total dysplasia of caudal structures, the presence of accessory neural tube and notochord tissue, and abnormal fusions of the notochord to the neural tube and tailgut. The incidence, severity, and location of the defects were dependent on the dose of the teratogen, and the stage of development at the time of treatment. The defects resembled those induced in previous studies by treatment with sialic acid binding lectins such as wheat germ agglutinin and limulus polyphemus lectin (Griffith and Wiley, '90b).  相似文献   

4.
In order to clarify the anatomical precursor of short and wry neck, 48-hr chick embryos were injected with 6.25-200 micrograms of the organophosphate (OP) insecticide diazinon and recovered either at 96 hr for histological evaluation or at 19 days for gross observation. Among embryos recovered at 96 hr, all receiving a dose of 25-200 micrograms showed, in serial cross sections, the cervical notochord severely folded in the vertical, horizontal, and diagonal planes and the adjacent neural tube variously folded (often with branching of its canal), deformed by the notochord, rotated, and/or displaced from the midline. Virtually all embryos injected with 6.25 or 12.5 micrograms were fully free of such abnormalities. The coinjection of 2-pyridinealdoxime methochloride (2-PAM, which protects the embryo from certain OP insecticide-induced teratisms) along with 200 micrograms of diazinon markedly reduced the notochord and neural wry neck at 19 days paralleled the 96-hr cervical histology: pronounced in all embryos receiving greater than or equal to 25 micrograms, virtually nonexistent in those receiving 6.25 or 12.5 micrograms. Though more marked at higher doses, wry neck occurred to varying extents at all doses, 6.25-100 micrograms. We conclude that 1) the primary insecticide effect is upon the notochord rather than the neural tube, 2) short neck is a direct consequence of notochord folding, 3) wry neck is apparently not linked with notochord folding, and 4) vertebral fusion is not the consequence solely of muscle paralysis as argued elsewhere. We propose that the notochord folds because diazinon disrupts normal formation of its sheath.  相似文献   

5.
Fibroblast growth factor (FGF) belongs to a family of polypeptides with diverse biological functions. In the present study we have assessed the role of FGF signaling in the development of nervous system and mesodermal tissues in chick embryo. Treatment of in vitro cultured embryos with exogenous, human recombinant FGF led to abnormalities in neural induction and development, notochord formation and somitogenesis as studied by gross morphology and histology. Overall growth and development was also adversely affected as seen from the measurement of body axis length. Further, treatment of embryos with FGF resulted in differential modulation of expression of two genes important in normal development as studied by whole mount in situ hybridization using DIG-labeled riboprobes. The expression of Brachyury, which is necessary for mesoderm formation, was down-regulated in FGF-treated embryos. The expression of noggin, the product which participates in the patterning of the chick neural tube was, on the other hand, up-regulated within 2 h. We also studied development of neural and mesodermal tissues in conditions where FGF signaling was defective. This was achieved by culturing the embryos in the presence of suramin. In the presence of low doses of suramin (100-150 nmole/culture), abnormalities were detected mainly in the mesodermal structures while at higher doses (200-400 nmole/culture), the nervous system too was found to be abnormal in a large proportion of embryos. Treatment of chick embryos with suramin (200 nmole/culture) also modulated the expression of Brachyuryand noggin within a 2 h period. The results showthat FGF signaling plays an important role in the molecular events leading to the development of nervous system and mesodermal tissues in the chick embryo.  相似文献   

6.
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways.  相似文献   

7.
We have analyzed the role of the zebrafish yolk cell in the processes of mesoderm induction and establishment of the organizer. By recombining blastomere-free yolk cells and animal cap tissue we have shown that the yolk cell itself can induce mesoderm in neighboring blastomeres. We further demonstrate the competence of all blastomeres to form mesoderm, suggesting the endogenous mesoderm inducing signal to be locally restricted. Ablation of the vegetal third of the yolk cell during the first 20 min of development does not interfere with mesoderm formation in general, but results in completely ventralized embryos. These embryos lack the notochord, neuroectoderm, and the anterior-most 14-15 somites, demonstrating that the ablation affects the formation of the trunk-, but not the tail region of the embryo. This suggests the presence of a trunk organizer in fish. The dorsalized mutant swirl (zbmp-2b) shows expanded dorsal structures and missing ventral structures. In contrast to the phenotypes obtained upon the ablation treatment in wild-type embryos, removal of the vegetal-most yolk in swirl mutants results in embryos which do form neuroectoderm and anterior trunk somites. However, both wild-type and swirl mutants lack a notochord upon vegetal yolk removal. These ablation experiments in wild-type and swirl mutant embryos demonstrate that in zebrafish dorsal determining factors originate from the vegetal part of the yolk cell. These factors set up two independent activities: one induces the notochord and the other is involved in the formation of the neuroectoderm and the trunk region by counteracting the function of swirl. In addition, these experiments show that the establishment of the anteroposterior axis is independent of the dorsoventral axis.  相似文献   

8.
The mouse mutant curly tail (ct) provides a model system for studies of neurulation mechanisms. 60% of ct/ct embryos develop spinal neural tube defects (NTD) as a result of delayed neurulation at the posterior neuropore whereas the remaining 40% of embryos develop normally. In order to investigate the role of cell proliferation during mouse neurulation, cell cycle parameters were studied in curly tail embryos developing spinal NTD and in their normally developing litter-mates. Measurements were made of mitotic index, median length of S-phase and percent reduction of labelling index during a [3H]thymidine pulse-chase experiment. These independent measures of cell proliferation rate indicate a reduced rate of proliferation of gut endoderm and notochord cells in the neuropore region of embryos developing spinal NTD compared with normally developing controls. The incidence of cell death and the relative frequency of mitotic spindle orientations does not differ consistently between normal and abnormal embryos. These results suggest a mechanism of spinal NTD pathogenesis in curly tail embryos based on failure of normal cell proliferation in gut endoderm and notochord.  相似文献   

9.
Electrophysiological evidence is presented for the exchange of small ions directly between cells interiors, i.e. "electrical coupling," in the early chick embryo. Experiments with intracellular marking show that coupling is widespread, occurring between cells in the same tissue, e.g. ectoderm, notochord, neural plate, mesoderm, and Hensen's node, and between cells in different tissues, e.g. notochord to neural plate, notochord to neural tube, notochord to mesoderm. The coupling demonstrates the presence of specialized low-resistance intercellular junctions as found in other embryos and numerous adult tissues. The results are discussed in relation to recent electron microscopical studies of intercellular junctions in the early chick embryo. The function of the electrical coupling in embryogenesis remains unknown, but some possibilities are considered.  相似文献   

10.
11.
12.
Summary Arrested embryos from lethal (emb) mutants of Arabidopsis thaliana were rescued on a nutrient medium designed to promote plant regeneration from immature wild-type cotyledons. The best response was observed with mutant embryos arrested at the heart to cotyledon stages of development. Embryos arrested at a globular stage produced callus but failed to turn green or form normal shoots in culture. Many of the mutant plants produced in culture were unusually pale with abnormal leaves, rosettes, and patterns of reproductive development. Other plants were phenotypically normal except for the presence of siliques containing 100% aborted seeds following self-pollination. These results demonstrate that genes with essential functions during plant embryo development differ in their pattern of expression at later stages of the life cycle. Most of the 15 genes examined in this study were essential for embryogenesis but were required again for subsequent stages of development. Only EMB24 appeared to be limited in function to embryo development. These differences in the response of mutant embryos in culture may facilitate the classification of embryonic lethals and the identification of genes with developmental rather than housekeeping functions.  相似文献   

13.
Endogenous patterns of BMP signaling during early chick development   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily signaling molecules that play important roles in a wide variety of developmental processes. In this study, we have used an antibody specific for the phosphorylated and activated form of Smad1 to examine endogenous patterns of BMP signaling in chick embryos during early development. We find complex spatial and temporal distributions of BMP signaling that elucidate how BMPs may function in multiple patterning events in the early chick embryo. In the pregastrula embryo, we find that BMP signaling is initially ubiquitous and is extinguished in the epiblast at the onset of primitive streak formation. At the head process stage, BMP signaling is inactivated in prospective neural plate, while it is strongly activated at the neural plate border, a region which is populated by cells that will give rise to neural crest. During later development, we find a dynamic spatiotemporal activation of BMP signaling along the rostrocaudal axis, in the dorsal neural tube, in the notochord, and in the somites during their maturation process. We discuss the implication of our results for endogenous functions of BMP signaling during chick development.  相似文献   

14.
The crosses, T /+ or T/t w2× btm/btm , give rise to 50% incidence of the tailless mice, development of which was investigated. No difference was seen in external appearance of the embryos at 9 days of gestation. However, some embryos showed fusion of the notochord and the neural tube at the posterior part of the body on the histological examination. The prospective tailless individuals were distinguishable from the normal littermates by the constriction of the root of the tail at 10 days of gestation. Thereafter, they showed several abnormalities such as the poor growth of the posterior part of the body, thinning of the tail and a blood blister at the tail tip or in the lumbosacral region. The abnormal embryos of 11–12 days showed severer abnormalities in the medio-dorsal area, i.e., the notochord was branched or degenerated at several places and the neural tube was distorted, duplicated or fused with the mesenchyme. All the tailless newborn young had blood blisters or red scars on the dorsal skin at the middle of the lumbosacral region.
Histologically, the spinal cord posterior to the lumbosacral level was revealed to be severely distorted or duplicated and completely devoid of the bony vertebrae, and the dorsal blood blister was found to be the meningomyelocele derived from the abnormal development of the spinal cord. Skeletal abnormalities of the tailless young were as follows. The sacral and caudal vertebrae were absent. The cervical vertebrae were mostly normal, but the thoracic and lumbar vertebrae showed several abnormalities such as fusion of the ribs, lack of the vertebral body and vertebral arch.  相似文献   

15.
BACKGROUND: Teratology studies must be carefully designed to minimize potential secondary effects of vehicle and delivery routes. A systematic method to evaluate chick models of early embryogenesis is lacking. METHODS: We investigated 3 experimental approaches that are popular for studies of early avian development, in terms of their utility for teratogen assessment starting at gastrulation. These included in vitro embryo culture, egg windowing followed by direct application of a carrier vehicle to the embryo, and injection of a carrier vehicle into the egg yolk. We also developed a morphologically based scoring system to assess development of the early embryo. RESULTS: The in vitro culture and egg windowing approaches both caused an unacceptably high incidence of central nervous system and cardiac abnormalities in vehicle-treated embryos, which made it difficult to identify teratogen-specific defects. In contrast, exposing chick embryos to vehicle via direct egg yolk injection did not induce developmental anomalies. CONCLUSIONS: Optimization of the exposure route of potential toxicants to the embryo is critical because control treatments can cause developmental anomalies. In ovo yolk injection minimizes perturbation of young embryos and may be appropriate for teratogen delivery.  相似文献   

16.
Growth and Differentiation Factor 1 (GDF-1) has been implicated in left-right patterning of the mouse embryo but has no other known function. Here, we demonstrate a genetic interaction between Gdf1 and Nodal during anterior axis development. Gdf1-/-;Nodal+/- mutants displayed several abnormalities that were not present in either Gdf1-/- or Nodal+/- single mutants, including absence of notochord and prechordal plate, and malformation of the foregut; organizing centers implicated in the development of the anterior head and branchial arches, respectively. Consistent with these deficits, Gdf1-/-;Nodal+/- mutant embryos displayed a number of axial midline abnormalities, including holoprosencephaly, anterior head truncation, cleft lip, fused nasal cavity, and lack of jaws and tongue. The absence of these defects in single mutants indicated a synergistic interaction between Nodal and GDF-1 in the node, from which the axial mesendoderm that gives rise to the notochord, prechordal plate, and foregut endoderm originates, and where the two factors are co-expressed. This notion was supported by a severe downregulation of FoxA2 and goosecoid in the anterior primitive streak of double mutant embryos. Unlike that in the lateral plate mesoderm, Nodal expression in the node was independent of GDF-1, indicating that both factors act in parallel to control the development of mesendodermal precursors. Receptor reconstitution experiments indicated that GDF-1, like Nodal, can signal through the type I receptors ALK4 and ALK7. However, analysis of compound mutants indicated that ALK4, but not ALK7, was responsible for the effects of GDF-1 and Nodal during anterior axis development. These results indicate that GDF-1 and Nodal converge on ALK4 in the anterior primitive streak to control the formation of organizing centers that are necessary for normal forebrain and branchial arch development.  相似文献   

17.
Mammalian lefty and zebrafish antivin, highly related to lefty, are shown to be expressed asymmetrically and involved in the specification of the left body side of early embryos. We isolated a chick homologue of the antivin/lefty1 cDNA and studied its expression pattern during early chick development. We found that antivin/lefty1 is expressed asymmetrically on the left side of the prospective floorplate, notochord and lateral plate mesoderm of the chick embryo.  相似文献   

18.
Zebrafish have recently become a model of choice among developmental biologists. This unique model enables both modern molecular and genetic studies to be carried out to identify genes involved in a wide variety of developmental processes. The success of the genetic approach depends largely on the application of an easy and effective screening method to identify interesting mutants. In order to develop a method for visualizing skeletal structures in zebrafish embryos that would be suitable for screening skeletal mutants, we investigated the use of the fluorescent chromophore calcein, which binds specifically to calcified skeletal structures. By using this method, we followed the development of the skeletal structures in zebrafish embryos from day 1 to day 21 postfertilization, and analyzed the effect of bone morphogenetic protein-2 (BMP2) on axial skeleton development. We found the development of the calcified skeletal structure to appear in a progressive fashion from head to tail. Calcified structures in the head (i.e., the jaw) developed first, which were then followed by the axial skeleton in the trunk. Interesting to note was that there appeared to be two domains in the calcification of vertebrae within the axial skeleton. The first three vertebrae were in the first domain; the rest being in the second domain. Compared with Alcian blue staining, we found that calcein staining indeed labels calcified skeletal structures, and, moreover, it is a more sensitive and inclusive method for visualizing skeletal structures. To determine whether calcein staining could also be used to detect abnormal bone development, we ectopically expressed BMP2 in zebrafish notochord cells. We demonstrated that ectopic expression of BMP2 in notochord cells inhibited the development of the axial skeleton. Together, these results clearly demonstrated the sensitivity of calcein staining for visualizing bone structures in developing zebrafish embryos and its effectiveness for screening for mutants that have bone structure defects.  相似文献   

19.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

20.
In C. elegans, mutants in the anaphase-promoting complex or cyclosome (APC/C) exhibit defects in germline proliferation, the formation of the vulva and male tail, and the metaphase to anaphase transition of meiosis I. Oocytes lacking APC/C activity can be fertilized but arrest in metaphase of meiosis I and are blocked from further development. To examine the cell cycle and developmental consequences of reducing but not fully depleting APC/C activity, we analyzed defects in embryos and larvae of mat-1/cdc-27 mutants grown at semi-permissive temperatures. Hypomorphic embryos developed to the multicellular stage but were slow to complete meiosis I and displayed aberrant meiotic chromosome separation. More severely affected embryos skipped meiosis II altogether and exhibited striking defects in meiotic exit. These latter embryos failed to produce normal eggshells or establish normal asymmetries prior to the first mitotic division. In developing larvae, extended M-phase delays in late-dividing cell lineages were associated with defects in the morphogenesis of the male tail. This study reveals the importance of dosage-specific mutants in analyzing molecular functions of a ubiquitously functioning protein within different cell types and tissues, and striking correlations between specific abnormalities in cell cycle progression and particular developmental defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号