首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between the volumes displaced by the diaphragm and the abdominal wall during spontaneous breathing in supine anesthetized dogs. Diaphragmatic volume displacement (Vdi) was calculated from measurements taken from anteroposterior fluoroscopic images employing a previously described geometric model. The volume displacement of the abdominal wall (Vabd) was measured with a calibrated Respitrace. Shortening of single diaphragm muscle bundles in costal and crural regions was measured as the distance between radiopaque beads sutured to the peritoneal surface of the muscle. We found that Vdi always exceeded Vabd, but Vabd/Vdi was larger in animals in which the abdominal wall was more compliant. In this preparation, Vdi is better correlated with costal than with crural shortening. Vabd did not correlate with either costal or crural shortening. We infer that the difference between Vdi and Vabd reflects the volume displacement of the lower rib cage caused by diaphragm contraction. This volume difference was tightly correlated with costal shortening. We conclude from these data that coupling between Vdi and Vabd is influenced by the relative compliances of the chest wall and abdomen. Shortening of regions of the diaphragm may have variable relationships to the measured volume displacement, but costal shortening is intimately related to expansion of the lower rib cage.  相似文献   

2.
Volume quantification of chest wall motion in dogs   总被引:3,自引:0,他引:3  
We employed high-speed multisliced X-ray-computed tomography to determine the relative volume contributions of rib cage (delta Vrc) and diaphragmatic motion (delta Vdi) to tidal volume (VT) during spontaneous breathing in 6 anesthetized dogs lying supine. Mean values were 40 +/- 6% (SE) for delta Vrc and 62 +/- 8% of VT for delta Vdi. The difference between VT and changes in thoracic cavity volume was taken to represent a change in thoracic blood volume (2 +/- 3% of VT). To estimate how much of delta Vrc was caused by diaphragmatic contraction and how much of delta Vdi was caused by rib cage motion, delta Vrc and delta Vdi were determined during bilateral stimulation of the C5-C6 phrenic nerve roots in the apneic dog and again during spontaneous breathing after phrenicotomy. Thoracic cavity volume (Vth) measured during hypocapnic apnea was consistently larger than Vth at end expiration, suggesting that relaxation of expiratory muscles contributed significantly to both delta Vrc and delta Vdi during spontaneous inspiration. Phrenic nerve stimulation did not contribute to delta Vrc, suggesting that diaphragmatic contraction had no net expanding action on the rib cage above the zone of apposition. Spontaneous breathing after phrenicotomy resulted in small and inconsistent diaphragmatic displacement (8 +/- 4% of VT). We conclude that the diaphragm does not drive the rib cage to inflate the lungs and that rib cage motion does not significantly affect diaphragmatic position during spontaneous breathing in anesthetized dogs lying supine.  相似文献   

3.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   

4.
During semistatic inspiratory and expiratory vital capacity (VC) maneuvers, axial motion of the diaphragm was measured by lateral fluoroscopy and was compared with diaphragmatic volume displacement. Axial motion was measured at the anterior, middle, and posterior parts of the diaphragm, and the mean of these measurements was used. The volume displacement was calculated in two ways: first, from respiratory inductive plethysmograph-(Respitrace) derived cross-sectional area changes of rib cage and abdomen (Vdi,RIP) by means of a theoretical analysis described by Mead and Loring (J. Appl. Physiol. 53: 750-755, 1982) and, second, from fluoroscopically measured changes in position and anteroposterior surface of the diaphragm (Vdi,F). A very good linear relationship was found between Vdi,RIP and Vdi,F during inspiration as well as expiration (r greater than 0.95), indicating that the analysis of Mead and Loring was valid in the conditions of the present study. The diaphragmatic volume displacement (active or passive) accounted for 50-60% of VC. A very good linear relationship was also found between mean axial motion and volume displacement of the diaphragm measured with both methods during inspiration and expiration (r greater than 0.98). Our data suggest that, over the VC range, diaphragmatic displacement functionally can be represented by a pistonlike model, although topographically and anatomically it does not behave as a piston.  相似文献   

5.
To follow regional deformation of the diaphragm in dogs, radiopaque markers were implanted under surgical anesthesia into different anatomic regions of the muscle in triangular arrays (approximately 1 cm to a side). After recovery from surgery, changes in area and shape of the triangles were followed with biplane cinefluorography during quiet breathing and during inspiratory efforts against an occluded airway (Mueller maneuvers). From changes in shape of the triangles during contraction, area changes were decomposed into a major direction and magnitude of shortening (Eg1) and a minor length change (Eg2) perpendicular to Eg1, both expressed as a fraction of initial length at end expiration. With the use of these techniques, systematic differences in regional area change were observed in different parts of the diaphragm during inspiratory efforts at different lung volumes. Regional area always decreased during contraction in the crural and midcostal zones of apposition to the rib cage. Area decreased less and often increased during inspiratory efforts in the costal dome near the central tendon and in the costal region near its rib cage insertion. Differences in regional area change were not due to differences in the Eg1 in different parts of the diaphragm but were a consequence of differences in widening of the muscle along Eg2 perpendicular to the direction of Eg1. As lung volume was passively increased above functional residual capacity, regional area decreased in all parts of the diaphragm except in the costal regions near rib cage insertion, where area increased.  相似文献   

6.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We measured the volume change of the thoracic cavity (delta Vth) and the volumes displaced by the diaphragm (delta Vdi) and rib cage (delta Vrc) in six pentobarbital-anesthetized dogs lying supine. A high-speed X-ray scanner (dynamic spatial reconstructor) provided three-dimensional images of the thorax during spontaneous breathing and during mechanical ventilation with paralysis. Tidal volume (VT) was measured by integrating gas flow. Changes in thoracic liquid volume (delta Vliq, presumably caused by changes in thoracic blood volume) were calculated as delta Vth - VT. Absolute volume displaced by the rib cage was not significantly different during the two modes of ventilation. During spontaneous breathing, thoracic blood volume increased during inspiration; delta Vliq was 12.3 +/- 4.1% of delta Vth. During mechanical ventilation, delta Vliq was nearly zero. Configuration of the relaxed chest wall was similar during muscular relaxation induced by either pharmacological paralysis or hyperventilation. Expiratory muscle activity produced 50 +/- 11% of the delta Vth during spontaneous breathing. We conclude that at constant VT the volume displaced by the rib cage is remarkably similar during the transition from spontaneous breathing to mechanical ventilation, while both diaphragmatic volume displacement and changes in intrathoracic blood volume decrease by a similar amount.  相似文献   

8.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

9.
Respiratory muscle length was measured with sonomicrometry to determine the relation between inspiratory flow and velocity of shortening of the external intercostal and diaphragm. Electromyographic (EMG) activity and tidal shortening of the costal and crural segments of the diaphragm and of the external intercostal were recorded during hyperoxic CO2 rebreathing in 12 anesthetized dogs. We observed a linear increase of EMG activity and peak tidal shortening of costal and crural diaphragm with alveolar CO2 partial pressure. For the external intercostal, no consistent pattern was found either in EMG activity or in tidal shortening. Mean inspiratory flow was linearly related to mean velocity of shortening of costal and crural diaphragm, with no difference between the two segments. Considerable shortening occurred in costal and crural diaphragm during inspiratory efforts against occlusion. We conclude that the relation between mean inspiratory flow and mean velocity of shortening of costal and crural diaphragm is linear and can be altered by an inspiratory load. There does not appear to be a relationship between inspiratory flow and velocity of shortening of external intercostals.  相似文献   

10.
The purpose of the present study was to examine the reflex effects of mechanical stimulation of intestinal visceral afferents on the pattern of respiratory muscle activation. In 14 dogs anesthetized with pentobarbital sodium, electromyographic activity of the costal and crural diaphragm, parasternal intercostal, and upper airway respiratory muscles was measured during distension of the small intestine. Rib cage and abdominal motion and tidal volume were also recorded. Distension produced an immediate apnea (11.16 +/- 0.80 s). During the first postapneic breath, costal (43 +/- 7% control) and crural (64 +/- 6% control) activity were reduced (P less than 0.001). In contrast, intercostal (137 +/- 11%) and upper airway muscle activity, including alae nasi (157 +/- 16%), genioglossus (170 +/- 15%), and posterior cricoarytenoid muscles (142 +/- 7%) all increased (P less than 0.005). There was greater outward rib cage motion although the abdomen moved paradoxically inward during inspiration, resulting in a reduction in tidal volume (82 +/- 6% control) (P less than 0.005). Postvagotomy distension produced a similar apnea and subsequent reduction in costal and crural activity. However, enhancement of intercostal and upper airway muscle activation was abolished and there was a greater fall in tidal volume (65 +/- 14%). In conclusion, mechanical stimulation of intestinal afferents affects the various inspiratory muscles differently; nonvagal afferents produce an initial apnea and subsequent depression of diaphragm activity whereas vagal pathways mediate selective enhancement of intercostal and upper airway muscle activation.  相似文献   

11.
Sonomicrometry was used to measure end-expiratory length and tidal shortening of the costal and crural diaphragm in awake chronically instrumented dogs in the right lateral decubitus, standing, and sitting postures. End-expiratory length did not change significantly in standing but fell by 11.5% for the costal and by 14.4% for the crural segment in sitting, when compared with decubitus position. Tidal shortening of both segments did not change significantly in the three postures. From decubitus to sitting, diaphragmatic electromyogram (EMG) activity increased only in some dogs, not significantly for the group. The inspiratory swing of abdominal pressure was always positive in decubitus and negative in standing and sitting. In the latter two postures, abdominal pressure increased gradually during expiration and fell in inspiration, suggesting a phasic expiratory contraction of abdominal muscles. We conclude that diaphragmatic tidal shortening is maintained in the different postures assumed by the awake dog during resting breathing. It seems that the main compensatory mechanism for changes in diaphragmatic operational length is a phasic expiratory contraction of the abdominal muscles rather than an increase in diaphragmatic EMG activity.  相似文献   

12.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

13.
Present methods of assessing the work of breathing in human infants do not account for the added load when intercostal muscle activity is lost and rib cage distortion occurs. We have developed a technique for assessing diaphragmatic work in this circumstance utilizing measurements of transdiaphragmatic pressure and abdominal volume displacement. Eleven preterm infants without evidence of lung disease were studied. During periods of minimal rib cage distortion, inspiratory diaphragmatic work averaged 5.9 g X cm X ml-1, increasing to an average of 12.4 g X cm X ml-1 with periods of paradoxical rib cage motion (P less than 0.01). Inspiratory work was strongly correlated with the electrical activity of the diaphragm as measured from its moving time average (P less than 0.05). Assuming a mechanical efficiency of 4% in these infants, the caloric cost of diaphragmatic work may reach 10% of their basal metabolic rate in periods with rib cage distortion. When lung disease is superimposed, the increased metabolic demands of the diaphragm may predispose preterm infants to fatigue and may contribute to a failure to grow.  相似文献   

14.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

15.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

16.
Changes in lung volume can be partitioned into volume displacements of the rib cage and abdomen. Abdominal displacements are often used as estimates of diaphragmatic displacements and changes in lengthening of diaphragmatic muscle. We used X-rays, ultrasound, and linear measurements of thoracic and abdominal diameters to estimate relationships among lung volume, thoracoabdominal configuration and diaphragmatic length, and we found that diaphragmatic length was strongly dependent on rib cage as well as abdominal displacement. In three subjects, the diaphragm shortened 57-85% as much during a breath made without abdominal displacement as during a normal breath in which the abdominal wall moved outward with the rib cage. We conclude that changes in diaphragmatic length can be estimated from surface measurements without radiation and that the length of the diaphragm cannot be estimated from displacements of the abdominal wall alone.  相似文献   

17.
Continuous positive airway pressure (CPAP) is known to produce activation of the expiratory muscles. Several factors may determine whether this activation can assist inspiration. In this study we asked how and to what extent expiratory muscle contraction can assist inspiration during CPAP. Respiratory muscle response to CPAP was studied in eight supine anesthetized dogs. Lung volume and diaphragmatic initial length were defended by recruitment of the expiratory muscles. At the maximum CPAP of 18 cmH2O, diaphragmatic initial lengths were longer than predicted by the passive relationship by 52 and 46% in the costal and crural diaphragmatic segments, respectively. During tidal breathing after cessation of expiratory muscle activity, a component of passive inspiration occurred before the onset of inspiratory diaphragmatic electromyogram (EMG). At CPAP of 18 cmH2O, passive inspiration represented 24% of the tidal volume (VT) and tidal breathing was within the relaxation characteristic. Diaphragmatic EMG decreased at CPAP of 18 cmH2O; however, VT and tidal shortening were unchanged. We identified passive and active components of inspiration. Passive inspiration was limited by the time between the cessation of expiratory activity and the onset of inspiratory activity. We conclude that increased expiratory activity during CPAP defends diaphragmatic initial length, assists inspiration, and preserves VT. Even though breathing appeared to be an expiratory act, there remained a significant component of active inspiratory diaphragmatic shortening, and the major portion of VT was produced during active inspiration.  相似文献   

18.
Effect of lung inflation on diaphragmatic shortening   总被引:1,自引:0,他引:1  
The effect of lung inflation on chest wall mechanics was studied in 11 vagotomized pentobarbital sodium-anesthetized dogs. Diaphragmatic shortening (percent change from initial length at functional residual capacity, %LFRC) and transdiaphragmatic pressure swings (delta Pdi) were compared with control values over a range of positive-pressure breathing that produced a maximum increase in lung volume to 40% of inspiratory capacity. There was no change in the electromyogram of the diaphragm or parasternal intercostals during positive-pressure breathing. delta Pdi and tidal volume (VT) fell to 52 +/- 3.3 and 42.5 +/- 5% (SE) of control. This was associated with a reduction in the initial resting length of 13 +/- 1.9 and 21 +/- 2.2%LFRC (SE) in the costal and crural diaphragms, respectively. Tidal diaphragmatic shortening, however, decreased to 66 +/- 7 and 57 +/- 7 and the mean velocity decreased to 78 +/- 10 and 63 +/- 8% (SE) of control for the costal and crural diaphragms, respectively. We conclude that the reduction in diaphragmatic shortening is the main determinant of the reduced delta Pdi and VT during lung inflation and relate this to what is currently known about diaphragmatic contractile properties.  相似文献   

19.
We studied chest wall kinematics and respiratory muscle action in five untrained healthy men walking on a motor-driven treadmill at 2 and 4 miles/h with constant grade (0%). The chest wall volume (Vcw), assessed by using the ELITE system, was modeled as the sum of the volumes of the lung-apposed rib cage (Vrc,p), diaphragm-apposed rib cage (Vrc,a), and abdomen (Vab). Esophageal and gastric pressures were measured simultaneously. Velocity of shortening (V(di)) and power [Wdi = diaphragm pressure (Pdi) x V(di)] of the diaphragm were also calculated. During walking, the progressive increase in end-inspiratory Vcw (P < 0.05) resulted from an increase in end-inspiratory Vrc,p and Vrc,a (P < 0.01). The progressive decrease (P < 0.05) in end-expiratory Vcw was entirely due to the decrease in end-expiratory Vab (P < 0.01). The increase in Vrc,a was proportionally slightly greater than the increase in Vrc,p, consistent with minimal rib cage distortion (2.5 +/- 0.2% at 4 miles/h). The Vcw end-inspiratory increase and end-expiratory decrease were accounted for by inspiratory rib cage (RCM,i) and abdominal (ABM) muscle action, respectively. The pressure developed by RCM,i and ABM and Pdi progressively increased (P < 0.05) from rest to the highest workload. The increase in V(di), more than the increase in the change in Pdi, accounted for the increase in Wdi. In conclusion, we found that, in walking healthy humans, the increase in ventilatory demand was met by the recruitment of the inspiratory and expiratory reserve volume. ABM action accounted for the expiratory reserve volume recruitment. We have also shown that the diaphragm acts mainly as a flow generator. The rib cage distortion, although measurable, is minimized by the coordinated action of respiratory muscles.  相似文献   

20.
The effects of diaphragm paralysis on respiratory activity were assessed in 13 anesthetized, spontaneously breathing dogs studied in the supine position. Transient diaphragmatic paralysis was induced by bilateral phrenic nerve cooling. Respiratory activity was assessed from measurements of ventilation and from the moving time averages of electrical activity recorded from the intercostal muscles and the central end of the fifth cervical root of the phrenic nerve. The degree of diaphragm paralysis was evaluated from changes in transdiaphragmatic pressure and reflected in rib cage and abdominal displacements. Animals were studied both before and after vagotomy breathing O2, 3.5% CO2 in O2, or 7% CO2 in O2. In dogs with intact vagi, both peak and rate of rise of phrenic and inspiratory intercostal electrical activity increased progressively as transdiaphragmatic pressure fell. Tidal volume decreased and breathing frequency increased as a result of a shortening in expiratory time. Inspiratory time and ventilation were unchanged by diaphragm paralysis. These findings were the same whether O2 or CO2 in O2 was breathed. After vagotomy, no significant change in phrenic or inspiratory intercostal activity occurred with diaphragm paralysis in spite of increased arterial CO2 partial pressure. Ventilation and tidal volume decreased significantly, and respiratory timing was unchanged. These results suggest that mechanisms mediated by the vagus nerves account for the compensatory increase in respiratory electrical activity during transient diaphragm paralysis. That inspiratory time is unchanged by diaphragm paralysis whereas the rate or rise of phrenic nerve activity increases suggest that reflexes other than the Hering-Breuer reflex contribute to the increased respiratory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号