首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Corticotropin-releasing activity (CRa) and arginine-vasopressin (AVP) content were measured in seven human hypothalami. The hypothalami were obtained from routine autopsy of patients suffering from no obvious neuroendocrinological abnormality. Twelve distinct hypothalamic areas were dissected in the frozen state and extracted in aqueous solution. CRa was measured by a bioassay measuring the aCTH released by rat pituitary cells in vitro, and vasopressin by direct radioimmunoassay. CRa was detectable in almost every area with the highest values in the supraoptic, paraventricular and infundibular (arcuate) areas. Vasopressin concentrations were maximum in the supraoptic nucleus, followed by the paraventricular and infundibular nuclei. We conclude that: hypothalami obtained from routine autopsy at a general hospital can be used for consistent CRa and vasopressin assay. Vasopressin and CRa are similarly distributed in man and in the rat. In both species, high CRa, which is not explained by AVP, is found in the paraventricular nucleus. The infundibular (arcuate) nucleus seems to display non AVP-dependent CRa much greater in the human than in the rat.  相似文献   

2.
We have clearly demonstrated corticotropin-releasing hormone (CRH) immunoreactive cell bodies and nerve fibers in the human hypothalamus by immunocytochemistry using free-floating sections instead of paraffin-embedded sections. Human hypothalami were obtained at autopsy, fixed and cryostat-sectioned at 40 microns. Free-floating sections were immunostained with antibody to CRH using the Vector ABC system. Most of CRH immunoreactive nerve fibers from the paraventricular nucleus pass under the fornix, while some CRH immunoreactive nerve fibers pass beyond the fornix and some through the fornix. Then the CRH immunoreactive nerve fibers run downward, medially to the supraoptic nucleus and toward the pituitary stalk. This method of immunocytochemistry is a very sensitive and suitable means for immunocytochemical studies of neuropeptides in the human brain.  相似文献   

3.
4.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

5.
Summary The distribution of acetylcholinesterase (AChE) in the hypothalamus of the female guinea pig has been examined histochemically.Activity was found in neurones of the supraoptic, paraventricular and infundibular nuclei; in the lateral hypothalamic area, in cells dorsomedial to the fornix at the level of the paraventricular nucleus and in a large group of cells surrounding the fornix at the level of the in-fundibular nucleus. A small well-stained group of cells, not identified in histological preparations, was present ventral to the paraventricular nucleus. The neuropil stained at the lateral border of the paraventricular nucleus and in the medial mammillary, suprachiasmatic and dorsomedial nuclei. The walls of some blood vessels stained; activity was particularly strong in vessels in the preoptic area and at the base of the median eminence. Nerve fibres on blood vessels ventral to the hypothalamus also stained.The degree of enzyme activity in the cell groups was compared in immature, pregnant, lactating, ovariectomized and hysterectomized animals. The greatest variation occurred in the infundibular nucleus. Hypophysectomy markedly reduced staining in the supraoptic nucleus. The possibility that AChE may be involved in the elaboration or transport of releasing factors is discussed.The authors are indebted to Dr. J. S. Perry for doing the surgery involved in this work. They are also grateful to him and to Dr. R. B. Heap for helpful discussions and to Miss M. Hamon for excellent technical assistance.  相似文献   

6.
Adrenomedullin2/intermedin (AM2/IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP) family. In the present study, we developed a specific radioimmunoassay of human AM2/IMD. Expression of AM2/IMD was studied in the human brain, pituitary, heart and kidney obtained at autopsy by radioimmunoassay and immunocytochemistry. Immunoreactive-AM2/IMD was detected by radioimmunoassay in human brains (range; 0.163-1.495 pmol/g wet weight), pituitaries (4.46+/-0.689 pmol/g wet weight, mean+/-S.E.M, n=3), left ventricles of hearts (0.251+/-0.0321 pmol/g wet weight, n=4), kidneys (3.49+/-1.18 pmol/g wet weight, n=5), and plasma obtained at healthy subjects (24.7+/-1.78 pmol/l, n=3). Reverse-phase high performance liquid chromatography showed that immunoreactive-AM2/IMD in human brain, kidney and plasma extracts were eluted in the position of authentic AM2/IMD. Additional peaks eluted earlier were found in the brain tissue and plasma. Immunocytochemistry showed that immunoreactive-AM2/IMD was localized in paraventricular and supraoptic nuclei of hypothalamus, anterior and posterior lobes of pituitary, cardiomyocytes, pericardial adipocytes, vascular endothelial cells of pericardial veins, and vascular smooth muscle cells of coronary arteries and renal arterioles as well as in renal tubular cells. The present study has shown expression of AM2/IMD in various types of cells in the central nervous system and the cardiovascular system, and suggested possible (patho)physiological roles of AM2/IMD in these systems.  相似文献   

7.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

8.
Summary Developmental changes of thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of mallard embryos were studied by means of immunocytochemistry (PAP technique). The primary antibody was generated against synthetic TRH. Immunoreactive neurons were first detected in the hypothalamus of 14-day-old embryos. By day 20, increasing numbers of immunoreactive perikarya were observed in the paraventricular nucleus, anterior preoptic region and supraoptic region. Immunoreactive fiber projections were seen in the median eminence as early as embryonic day 20; they occurred also in some extrahypothalamic regions (lateral septum, accumbens nucleus). The number and staining intensity of the cell bodies increased up to hatching, and continued to increase during the first week after hatching.  相似文献   

9.
J K Rao  H Hu  C Prasad  A Jayaraman 《Peptides》1987,8(2):327-334
The distribution pattern of alpha-melanocyte stimulating hormone-like immunoreactivity (alpha-MSH-Li) was studied in cats using avidin-biotin modification of immunocytochemical method. Cell bodies containing alpha-MSH-Li were observed in the medial basal hypothalamus, especially in the infundibular nucleus, the lateral hypothalamus and near zona incerta. Fibers with alpha-MSH-Li extended beyond the hypothalamus, into the paraventricular nucleus of the thalamus, rostral amygdala, periaqueductal gray, locus ceruleus, parabrachial nucleus and medial nucleus of the nucleus tractus solitarius. Axons with alpha-MSH-Li were also seen diffusely in various cortical areas, but more extensively in the limbic cortical regions. The distribution pattern of the cell bodies and fibers containing alpha-MSH-Li bears several similarities to that seen in rats, but differs in that the alpha-MSH-Li was not observed in cell bodies in locations other than the medial basal and lateral hypothalamus.  相似文献   

10.
The occurrence and distribution of calcitonin gene-related peptide (CGRP) in the lower airways was studied by means of immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-like immunoreactivity (-LI) was observed in nerves from the epiglottis down to peripheral bronchi in rat, cat and guinea pig and also in human bronchi. Double staining revealed colocalization of CGRP-LI and substance P (SP)-LI in cell bodies of nodose and jugular ganglia as well as in axons and nerve terminals of the airways. Systemic capsaicin pretreatment induced a marked loss of the CGRP- and SP-immunoreactive (-IR) nerves in the lower airways. CGRP-IR was also present in epithelial endocrine cells and neuroepithelial bodies. The content of CGRP-LI as measured with RIA in guinea pig bronchi was significantly lower after capsaicin pretreatment. Analysis of human bronchial extracts revealed that CGRP-LI coeluted with synthetic human CGRP on HPLC. In the isolated perfused guinea pig lung capsaicin exposure caused overflow of CGRP-LI suggesting release from peripheral branches of sensory nerves. Both in vivo experiments in the guinea pig measuring insufflation pressure as well as in vitro studies on isolated guinea pig and human bronchi showed that whereas tachykinins contracted bronchial smooth muscle no contractile or relaxing effect was elicited by human or rat CGRP. However, CGRP caused relaxation of serotonin precontracted guinea pig and human pulmonary arteries. In conclusion, the presence and release of CGRP-LI from capsaicin sensitive nerves in the lower airways adds another possible mediator, in addition to tachykinins, of vascular reactions upon sensory nerve irritation.  相似文献   

11.
Summary In order to identify clearly the nervous structures containing somatostatin in the human hypothalamus, an immunohistochemical localization of this neurohormone was performed at light-microscopic level. Using a antiserum specific to somatostatin and the unlabeled antibody peroxidase-antiperoxidase technique, we have found somatostatin in neurons with cell bodies in an area in the anterior hypothalamus corresponding to the infundibular nucleus. Somatostatin-containing fibers were also detected in the neurovascular zone of the pituitary stalk, suggesting that somatostatin is released in that region to reach the capillaries in the pituitary portal plexus. A large bundle of somatostatin fibers extending from the anterior part of the paraventricular nucleus up to the posterior portion of the mammillary bodies has also been detected. The role of these fibers still remains to be clarified.  相似文献   

12.
The topographical distribution of neurons containing LHRH has been investigated in newborn hypothalamus using the peroxidase anti-peroxidase technique. In control subjects, LHRH immunoreactive (LHRH-IR) perikarya have been mainly observed essentially in the infundibular nucleus. The preoptic region displayed a moderate density of LHRH-IR cell bodies. High LHRH innervation was observed in the anterior hypothalamus in the lamina terminalis and in the mediobasal hypothalamus in the median eminence, and in the peri- and paraventricular regions. In sudden death infant syndrome, a comparable mapping was observed, except a low density in the mediobasal peri- and paraventricular areas.  相似文献   

13.
The distribution of delta sleep-inducing peptide immunoreactive cell bodies, fibers, and terminal-like structures was investigated in the normal human hypothalamus during the first postnatal year, using immunohistofluorescence and peroxidase anti-peroxidase techniques. Immunolabeled perikarya were relatively few and were mostly scattered through the anterior (preoptic) and mediobasal regions (infundibular nucleus) of the hypothalamus. DSIP-immunoreactive fibers and terminal-like fibers were observed throughout the entire rostrocaudal extent of the hypothalamus. They exhibit high densities in the preoptic region, the organum vasculosum of lamina terminalis, infundibular nucleus and median eminence. Moderate to low densities of DSIP-immunoreactive fibers were observed in the other hypothalamic structures, located in the anterior and mediobasal regions of hypothalamus, such as periventricular, paraventricular, suprachiasmatic, ventromedial, dorsomedial and parafornical nuclei. In the present study, the analysis of the immunohistochemical pattern of DSIP-immunoreactive neuronal elements in the human infant hypothalamus during the first postnatal year provided evidence of the presence of several differences. We have found qualitative age-related changes in the density of DSIP immunoreactivity in several hypothalamic structures such as the anterior region and the median eminence.  相似文献   

14.
Summary To elucidate the role of hypothalamic neuropeptides in regulation of reproductive phenomena of seasonally breeding feral mammals, we used Japanese long-fingered bats, Miniopterus schreibersii fuliginosus, for immunocytochemical study of distribution of the following neuropeptides in the hypothalamus: arginin vasopressin, oxytocin, luteinizing hormone-releasing hormone, somatostatin, corticotropin-releasing factor, and growth hormone-releasing factor. The size, shape and location of supraoptic, paraventricular, suprachiasmatic, and arcuate nuclei of the bat were determined. Arginin vasopressin-and oxytocin-immunoreactive magnocellular neurons were found in the supraoptic and paraventricular nuclei, where they exhibited separate distribution into two distinct groups. Parvocellular arginin vasopressin neurons occurred only in the suprachiasmatic nucleus. The hibernating bats exhibited slightly increased numbers of vasopressin and oxytocin neurons in the supraoptic and paraventricular nuclei. The pregnant bat displayed further increased numbers of vasopressin and oxytocin neurons in both nuclei. Somatostatin-immunoreactive neurons in the paraventricular nucleus were also immunopositive to anti-oxytocin serum, while those in the ventromedial and arcuate nuclei reacted solely to anti-somatostatin serum. They projected to the anterior median eminence and infundibular stalk. Luteinizing hormone-releasing hormone-immunoreactive perikarya were scattered throughout the basal hypothalamus, being particularly abundant in the arcuate nucleus. They were larger in size in hibernating bats than those in normal (non-pregnant) and pregnant females. They projected fibers mainly to the internal layer of the median eminence and infundibular stalk. A few luteinizing hormone-releasing hormone-reactive fibers were also observed in the organum vasculosum laminae terminalis, lateral habenular nuclei, pineal stalk, retroflexus fasciculus, and olfactory tubercle. Corticotropin releasing factor-immunoreactive perikarya were distributed in the paraventricular nucleus and medial preoptic area and projected into the external layer of the anterior median eminence, while growth hormone-releasing factor-immunoreactive perikarya occurred only in the arcuate nucleus and projected into the posterior part of the median eminence.  相似文献   

15.
Summary Two different monoclonal antibodies raised against choline acetyltransferase were used, together with preembedding immunocytochemical techniques, to visualize the possible cholinergic innervation of the supraoptic and paraventricular nuclei of the rat hypothalamus. Light microscopy confirmed the presence of a group of bipolar and multipolar immunoreactive neurones in the hypothalamus dorsolateral to the supraoptic nucleus as well as numerous immunopositive fibers. Electron microscopy showed that the immunopositive cell bodies contained the usual perikaryal organelles while most immunoreactive fibers appeared dendritic; immunonegative terminals made synaptic contact onto these profiles. Immunopositive terminals making synaptic contact onto dendritic profiles were also noted in this area. In contrast, light microscopy showed no immunoreactivity to choline acetyltransferase in the magnocellular nuclei themselves. Electron microscopy revealed some immunopositive profiles along the boundaries of both nuclei, along the optic chiasm adjacent to the supraoptic nucleus and in the ventral glial lamina but not within the nuclei proper. Surprisingly, these immunopositive profiles appeared dendritic and were often contacted by one or more immunonegative synapses. Our observations thus indicate that cell bodies and dendrites in the supraoptic and paraventricular nuclei are not directly innervated by cholinergic synapses. The functional significance of the putative cholinergic dendrites in close proximity to magnocellular neurones remains to be determined.  相似文献   

16.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide consisting of 38 amino acids (PACAP1–38) with a potent stimulatory action on adenylate-cyclase in rat pituitary. The presence of PACAP-like immunoreactivity in human brain was studied by radioimmunoassay. Co-localization of PACAP with arginine vasopressin and oxytocin was investigated by immunocytochemistry in the human hypothalamus. Immunoreactive PACAP was detected in all regions of human brain (cortex, thalamus, hypothalamus, pons and hemisphere of cerebellum) with the highest levels found in the hypothalamus (8.5±1.9 pmol/g wet weight, n=w, mean±S.E.M.). High performance liquid chromatography of the human hypothalamic ex approximately 50% of the immunoreactive PACAP was eluted in the position of PACAP1–38. Immunocytochemical studies showed the presence of PACAP immunoreactive neurons in the paraventricular and supraoptic nuclei of human hypothalamus. PACAP co-localized with arginine vasopressin in magnocellular cells of these nuclei. These findings suggest that PACAP1-38 plays important physiological roles in the human hypothalamus.  相似文献   

17.
In Syrian hamsters (Mesocricetus auratus), oxytocin (OXT) activity within the medial preoptic-anterior hypothalamus (MPOA-AH) and the ventromedial hypothalamus (VMH) plays an important role in the expression of sexual receptivity. Immunocytochemical analysis with OXT-specific antibodies was used to identify the distribution of OXT-containing cell bodies and fibers in female hamster brain and to determine the possible sources of OXT important for sexual receptivity. Oxytocin-immunoreactive cell bodies and fibers were found in several regions of the preoptic area, including the medial preoptic area, the medial preoptic nucleus, and the bed nucleus of the stria terminalis. Large numbers of cell bodies and fibers were localized within the paraventricular and supraoptic nuclei, and in anterior hypothalamus. OXT-immunoreactive fibers were observed in the VMH and the ventral tegmental area. The anatomical data from the present study support the hypothesis that OXT activity in the MPOA-AH and the VMH plays an important role in the regulation of sexual receptivity in hamsters.  相似文献   

18.
In rodents, the mediobasal hypothalamus and the hypothalamic paraventricular nucleus (PVN) are implicated in leptin signaling. Surprisingly little data is available on the human hypothalamus. We set out to study the expression of suppressor-of-cytokine-signaling 3 (SOCS3), α-melanocyte stimulating hormone (αMSH) and agouti-related protein (AgRP) in the infundibular nucleus (IFN) and to investigate the relationship between these neuropeptide expressions and serum leptin concentrations in a blood sample taken within 24h before death. We studied post-mortem human brain material by means of quantitative immunocytochemistry. We found that SOCS3 immunoreactivity was widely distributed throughout the hypothalamus, and most prominent in the PVN, whereas expression levels in the IFN were low. Surprisingly, SOCS3 expression in the PVN was inversely related to serum leptin. A significant positive correlation was observed between AgRP and NPY expression in the IFN. The inverse correlation between SOCS3 expression in the PVN and serum leptin was unexpected and may be related to the hypothalamic adaptation to fatal illness rather than to nutritional status, or may represent an interspecies difference.  相似文献   

19.
Calcitonin gene-related peptide (CGRP) is reported to exist in high concentrations in plasma and tumor tissues of medullary thyroid carcinomas. CGRP-like immunoreactivity (LI) in tumor tissues of pheochromocytomas was investigated by radioimmunoassay. CGRP-LI in 9 pheochromocytomas ranged from 0.50 to 1240 ng/g wet tissue. Sephadex G-50 column chromatography revealed that most of CGRP-LI in tumor extracts was eluted in an identical position to synthetic human CGRP. Reverse-phase high pressure liquid chromatography revealed that CGRP-LI in tumor extracts was eluted in an identical position to synthetic human CGRP and in a more hydrophobic position. These results indicate that high concentrations of CGRP-LI also exist in tumor tissues of pheochromocytomas.  相似文献   

20.
Summary The distribution of growth hormone-releasing factor (GRF)-like immunoreactivity in the human hypothalamus was studied by light-microscopic immunocytochemistry. With antibodies that we developed against synthetic human pancreatic GRF (hpGRF), we localized GRF immunoreactivity in neuronal cell bodies that were observed only in the infundibular (arcuate) nucleus. Immunostained nerve fibers were found in large numbers in the neurovascular zone of the median eminence, in the proximal portion of the pituitary stalk and in periventricular areas. These localizations are in agreement with those of studies recently performed in other species and strongly suggest that GRF can be released into the capillaries of the pituitary portal plexus to reach the anterior pituitary gland. The projections of GRF neurons in extra-infundibular regions suggest that GRF can also act as a neuromodulator or neurotransmitter in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号