首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycogen-binding (G) subunit of protein phosphatase-1G is phosphorylated stoichiometrically by glycogen synthase kinase-3 (GSK3), and with a greater catalytic efficiency than glycogen synthase, but only after prior phosphorylation by cyclic AMP-dependent protein kinase (A-kinase) at site 1. The residues phosphorylated are the first two serines in the sequence AIFKPGFSPQPSRRGS-, while the C-terminal serine (site 1) is one of the two residues phosphorylated by A-kinase. These findings demonstrate that (i) the G subunit undergoes multisite phosphorylation in vitro; (ii) phosphorylation by GSK3 requires the presence of a C-terminal phosphoserine residue; (iii) GSK3 can synergise with protein kinases other than casein kinase-2.  相似文献   

2.
CK2 is a ubiquitous and pleiotropic Ser/Thr-specific protein kinase that phosphorylates more than 300 protein substrates at sites specified by an acidic consensus sequence in which positions n + 3 and n + 1 are particularly important. Recognition of substrates by CK2 is known to rely on basic residues located in the catalytic site of the alpha subunit which make electrostatic contacts with the negative charges in the substrate consensus sequence, thereby assuring optimal binding; the regulatory beta subunit is believed to play a protective and stabilizing role. We describe a biochemical and structural analysis of CK2-mediated phosphorylation of a 22-mer synthetic peptide corresponding to the N-terminal tail of the eukaryotic translation initiation factor eIF2beta. Results demonstrate that this peptide still displays phosphorylation features similar to full-length eIF2beta and the CK2 beta subunit also contributes to recognition of the protein substrate by establishing both polar and hydrophobic interactions with specificity determinants located downstream from the phosphoacceptor site. In particular, the N-terminal domain of the beta subunit appears to be of crucial importance for optimizing high-affinity phosphorylation of the eIF2beta peptide. This domain includes an acidic cluster whose electrostatic contacts with basic residues of the substrate attenuate intrasteric pseudosubstrate inhibition while strengthening substrate-kinase binding.  相似文献   

3.
The heavy chain of the HLA-A2 antigen is phosphorylated by cyclic AMP-dependent protein kinase at two serine residues of the intracellular region. Limited proteolysis was performed on purified [32P]HLA-A2 antigens in order to define the sites of phosphorylation. Both of the phosphorylated serine residues are located in the carboxyl terminus of the heavy chain; one is encoded by exon 5, while the other is encoded by exon 6. The phosphoserine encoded by exon 5 is part of the conserved sequence Arg-Arg-Lys-Ser-Ser. This protein sequence contains the proper arrangement of amino acids for recognition and phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. In the murine class I antigens (H-2), exon 5 encodes a similar sequence of basic residues followed by one intervening residue and a threonine rather than a serine residue in the last amino acid position. A composite figure is presented that compares the carboxyl-terminal sequences of human and murine class I antigens and illustrates the known sites of phosphorylation recognized by various kinases. Each site of phosphorylation in the carboxyl terminus is contained within a conserved protein sequence encoded by one of the three exons. A separation and preservation of unique sites of phosphorylation could explain why there is segmentation in the genomic arrangement of class I molecules.  相似文献   

4.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

5.
Calcium/calmodulin-dependent protein kinase type II (CaMKII) and NMDA-type glutamate receptor (NMDAR) are neuronal proteins involved in learning and memory. CaMKII binds to the NR2B subunit of NMDAR in more than one mode, a stable association involving a noncatalytic site on CaMKII and an enzyme-substrate mode of interaction by its catalytic site. The latter binding results in phosphorylation of serine-1303 on NR2B. We have investigated this binding by studying the kinetics of phosphorylation of synthetic peptides harboring nested sequences of the phosphorylation site motif. We find that residues 1292-1297 of NR2B enhance the affinity of the catalytic site-mediated binding of CaMKII to the minimal phosphorylation site motif, 1298-1308 of NR2B, as evident from measurements of K(m) values for phosphorylation. However, CaMKII shows decreased affinity towards the closely related NR2A subunit due to an -Ile-Asn- motif present as a natural insertion in the analogous sequence on NR2A.  相似文献   

6.
Native phosphorylated mouse small heat shock protein hsp25 from Ehrlich ascites tumor cells was isolated and the in vivo phosphorylation sites of the protein were determined. Furthermore, native hsp25 was phosphorylated by the endogenous kinase(s) in a cell-free system as well as recombinant hsp25 was phosphorylated in vitro by protein kinase C and catalytic subunit of cAMP-dependent protein kinase. The two major phosphorylation sites of native and recombinant hsp25 were determined as Ser-15 and Ser-86. There are no differences in the hsp25 phosphorylation sites phosphorylated by the protein kinase C, the catalytic subunit of cAMP-dependent protein kinase and the unknown intracellular kinase(s). The serine residues identified exist in all known small mammalian stress proteins and are located in the conserved kinase recognition sequence Arg-X-X-Ser.  相似文献   

7.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

8.
Nine mutants of human casein kinase-2 beta subunit have been created and assayed for their ability to assemble with the catalytic alpha subunit to give, at a 1:1 molar ratio, a fully competent CK-2 holoenzyme as judged by the following criteria: 1) the generation of an active heterotetrameric form of CK-2 exhibiting the expected sedimentation coefficient and 2) the enhancement of catalytic activity of CK-2 alpha. Extended deletions of 71 and 44 residues from the C-terminal end, but not a 7 residue deletion (including the cdc2 phosphorylation site) prevent both reconstitution of the holoenzyme and, consequently, stimulation of activity. This indicates that residue(s) located in the 171-209 sequence is essential for reconstitution. Also a four residue's N-terminal deletion (removing the autophosphorylation site) and single to quintuple substitutions of alanine for the acidic residues clustered in the 55-70 sequence give rise to mutants that still assemble with the alpha subunit to give a tetrameric holoenzyme. However, in the case of the mutants A57,59, A63,64, A59-61,63,64 in vitro assembly with the CK-2 alpha subunit was not complete. There were also intermediate complexes, free alpha-subunit and beta-mutants found to sediment at various positions in the sucrose density gradient. In comparison to CK-2 beta +, mutants A57,59, A59-61 and A59-61,63,64 show an increased stimulation of the catalytic activity supporting the view that these residues play a crucial role in determining the basal activity of reconstituted CK-2 holoenzyme.  相似文献   

9.
Glycogen synthase kinase-3 phosphorylates three serine residues on glycogen synthase (sites 3a, 3b and 3c) which are all located in the same nine-amino-acid segment of the polypeptide chain. The sequence in this region is: Arg-Tyr-Pro-Arg-Pro-Ala-Ser(P)-Val-Pro-Pro-Ser(P)-Pro-Ser-Leu-Ser(P)-Arg-. These serine residues are distinct from the sites phosphorylated preferentially by cyclic-AMP-dependent protein kinase (sites 1a and 1b) and phosphorylase kinase (site 2). The N-terminal sequence of glycogen synthase containing the serine residue phosphorylated by phosphorylase kinase has been extended. The sequence in this region is: Pro-Leu-Ser-Arg-Thr-Leu-Ser(P)-Val-Ser-Ser-Leu-Pro-Gly-Leu-Glu-Asp-Trp-Glu-Asp- Glu-Phe-Asp-Leu-Glu-Asn-Ser-Val-Leu-Phe-(Asx2,Glx2,Ala2,Val2,Lys)-. The similarity to the N-terminal sequence of phosphorylase is confined to the immediate vicinity of the phosphorylation site (residues 4--15). The relationship of glycogen synthase kinase-3 to glycogen synthase kinases that have been described by other laboratories is discussed.  相似文献   

10.
Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme in the biogenesis of long chain fatty acids. The phosphorylation of the Ser-1200 residue by cyclic AMP-dependent protein kinase transforms ACC from a citrate-independent form to a citrate-dependent form (10, 16). We have isolated ACC cDNA clones with and without 24 bases which code for 8 additional amino acids located 4 residues upstream to the Ser-1200. The presence of the 8 extra amino acids inhibits the in vitro phosphorylation of the Ser-1200 by the catalytic subunit of cyclic AMP-dependent protein kinase. The S1 nuclease protection experiments indicate that the corresponding two ACC mRNA species occur in vivo. Furthermore, the occurrence of the two forms of ACC mRNA is regulated under different physiological conditions for lipogenesis in a tissue-specific manner. The existence of two forms of ACC mRNA provides the basis for the existence of isozymes of ACC whose Ser-1200 can be selectively phosphorylated. The location of this regulatory sequence for a specific phosphorylation site represents a new regulatory mechanism for protein phosphorylation.  相似文献   

11.
Rat liver fructose 1,6-bisphosphatase appears to be unique in that it extends 24-26 residues beyond the COOH-terminal amino acid of other mammalian fructose 1,6-bisphosphatases and this extension contains phosphorylation sites. Using as a frame of reference the 335-residue sequence of pig kidney fructose 1,6-bisphosphatase (Marcus, F., Edelstein, I., Reardon, I., and Heinrikson, R. L. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 7161-7165), the rat liver enzyme would extend to residue 361. Limited proteolysis in the COOH-terminal region of the molecule with chymotrypsin, trypsin, or both sequentially, led us to establish that the phosphorylation sites are located at Ser residues 341 and 356. The in vitro phosphorylation of purified rat liver fructose 1,6-bisphosphatase by the catalytic subunit of cyclic AMP-dependent protein kinase results in modification at both residues, although the major site of phosphorylation (61%) is at Ser-341. In contrast, rat liver fructose 1,6-bisphosphatase purified from animals that had been injected with [32P] phosphate contains most of the label (81%) at Ser-356.  相似文献   

12.
J A Buechler  S S Taylor 《Biochemistry》1989,28(5):2065-2070
In the absence of MgATP, the catalytic subunit of cAMP-dependent protein kinase is irreversibly inhibited by the hydrophobic carbodiimide dicyclohexylcarbodiimide, and this inhibition is most likely due to the formation of a cross-link between a carboxyl group and a lysine residue in the active site (Toner-Webb & Taylor, 1987). In order to identify these cross-linked residues, the catalytic subunit was modified by dicyclohexylcarbodiimide and then treated with acetic anhydride and digested with trypsin. The resulting peptides were resolved by high-performance liquid chromatography. One major absorbing tryptic peptide and one smaller peptide consistently and reproducibly showed a decrease in absorbance after the catalytic subunit had been treated with DCCD. These peptides correspond to residues 166-190 and 57-93, respectively. A unique peptide was isolated from the modified catalytic subunit, and the sequence of this peptide established that the cross-linking occurred between Asp-184 and Lys-72. The cross-linking of these two residues, which were both identified previously as essential residues, confirms the likelihood that each plays a role in the functioning of this enzyme. The fact that Asp-184 and Lys-72 appear to be invariant in all protein kinases further supports the hypothesis that these two residues, located close to one another at the active site of the enzyme, play essential roles in catalysis.  相似文献   

13.
The regulatory subunit (RII-B) of bovine brain protein kinase II and the well-characterized regulatory subunit of heart protein kinase II (RII-H) exhibit similar physicochemical properties, but differ significantly in their peptide maps and antigenic determinants. As a starting point for studying structure/function relationships in RII-B and investigating the extent of homology and diversity between RII-B and RII-H, a peptide containing the autophosphorylation site of RII-B has been characterized. The phosphopeptide was rapidly (36 h) purified to homogeneity (yield = 40%) from a tryptic digest of RII-B using three consecutive reverse-phase high performance liquid chromatography steps. A combination of gas-phase microsequencing and solid-phase Edman degradation was used to determine the sequence and to identify the phosphorylated site: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-A la-Glu. RII-B contains a classical phosphorylation site for the catalytic subunit, and the phosphopeptide sequence is homologous to the sequence surrounding the phosphorylation site of RII-H. Fourteen amino acids are identical in the two sequences, and the high net negative charge on the peptide is conserved. However, the peptide from RII-B is alanine-rich and more hydrophobic. Furthermore, five differences between the two functionally related sequences provide direct evidence for the idea that RII-B and RII-H are the products of related but distinct genes.  相似文献   

14.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

15.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

16.
The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s−1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates.  相似文献   

17.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

18.
A purified bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) was rapidly phosphorylated by purified bovine lung cGMP-dependent protein kinase (cGK). Within a physiological concentration range, cGK catalyzed phosphorylation of cG-BPDE at a rate approximately 10 times greater than did equimolar concentrations of purified catalytic subunit of cAMP-dependent protein kinase (cAK). cG-BPDE was a poor substrate for either purified protein kinase C or Ca2+/calmodulin-dependent protein kinase II. Binding of cGMP to the cG-BPDE binding site was required for phosphorylation since (a) phosphorylation of cG-BPDE by the catalytic subunit of cAK was cGMP-dependent, (b) phosphorylation of cG-BPDE in the presence of a cGMP analog specific for activation of cGK was cGMP-dependent, and (c) occupation of the cG-BPDE hydrolytic site with competitive inhibitors did not produce the cGMP-dependent effect. cGMP-dependent phosphorylation of cG-BPDE by both cGK and cAK occurred at serine. Proteolytic digestion of cG-BPDE phosphorylated by either cGK or cAK revealed the same phosphopeptide pattern, suggesting that phosphorylation by the two kinases occurred at the same or adjacent site(s). Tryptic digestion of cG-BPDE phosphorylated by cGK and [gamma-32P]ATP produced a single major phosphopeptide of approximately 2 kDa with the following amino-terminal sequence: Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg- Radioactivity was released during the third cycle of Edman degradation. cG-BPDE is one of few specific in vitro cGK substrates of known function to be identified. Elevation of intracellular cGMP may cause phosphorylation of cG-BPDE by modulating the substrate site availability as well as by activating cGK. Such regulation would greatly increase the selectivity of the phosphorylation of cG-BPDE and would represent a unique mechanism of action of a cyclic nucleotide or other second messenger.  相似文献   

19.
Vacuolar ATPases constitute a novel class of N-ethylmaleimide- and nitrate-sensitive proton pumps associated with the endomembrane system of eukaryotic cells. They resemble F0F1-ATPases in that they are large multimeric proteins, 400-500 kDa, composed of three to nine different subunits. Previous studies have indicated that the active site is located on the approximately 70-kDa subunit. Using antibodies to the approximately 70-kDa subunit of corn to screen a carrot root lambda gt11 cDNA library, we have isolated cDNA clones of the carrot 69-kDa subunit. The complete primary structure of the 69-kDa subunit was then determined from the nucleotide sequence of its cDNA. The 69-kDa subunit consists of 623 amino acids (Mr 68,835), with no obvious membrane-spanning regions. The carrot cDNA sequence was over 70% homologous with exons of a Neurospora 69-kDa genomic clone. The protein sequence of the carrot 69-kDa subunit also exhibited 34.3% identity to four representative F0F1-ATPase beta-chains over a 275-amino-acid core stretch of similar sequence. Alignment studies revealed several regions which were highly homologous to beta-chains, including sequences previously implicated in catalytic function. This provides definitive evidence that the vacuolar ATPase is closely related to the F0F1-type ATPases. A major functional difference between the 69-kDa and beta-subunits is the location of 3 critical cysteine residues: two in the putative catalytic region (Cys-248 and Cys-256) and one in the proposed Mg2+-binding site (Cys-279). These cysteines (and two others) probably account for the sensitivity of the vacuolar H+-ATPase to the sulfhydryl reagent, N-ethylmaleimide. It is proposed that the two ATPases may have arisen from a common ancestor by the insertion or deletion of a large stretch of nonhomologous sequence near the amino-terminal end of the subunit.  相似文献   

20.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号