首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We developed a novel approach for improving the production of antibiotic from Streptomyces coelicolor A3(2) by inducing combined drug-resistant mutations. Mutants with enhanced (1.6- to 3-fold-higher) actinorhodin production were detected at a high frequency (5 to 10%) among isolates resistant to streptomycin (Str(r)), gentamicin (Gen(r)), or rifampin (Rif(r)), which developed spontaneously on agar plates which contained one of the three drugs. Construction of double mutants (str gen and str rif) by introducing gentamicin or rifampin resistance into an str mutant resulted in further increased (1.7- to 2.5-fold-higher) actinorhodin productivity. Likewise, triple mutants (str gen rif) thus constructed were found to have an even greater ability for producing the antibiotic, eventually generating a mutant able to produce 48 times more actinorhodin than the wild-type strain. Analysis of str mutants revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12. rif mutants were found to have a point mutation in the rpoB gene, which encodes the beta-subunit of RNA polymerase. Mutation points in gen mutants still remain unknown. These single, double, and triple mutants displayed in hierarchical order a remarkable increase in the production of ActII-ORF4, a pathway-specific regulatory protein, as determined by Western blotting analysis. This reflects the same hierarchical order observed for the increase in actinorhodin production. The superior ability of the triple mutants was demonstrated by physiological analyses under various cultural conditions. We conclude that by inducing combined drug-resistant mutations we can continuously increase the production of antibiotic in a stepwise manner. This new breeding approach could be especially effective for initially improving the production of antibiotics from wild-type strains.  相似文献   

4.
5.
Working with a Streptomyces albus strain that had previously been bred to produce industrial amounts (10 mg/ml) of salinomycin, we demonstrated the efficacy of introducing drug resistance-producing mutations for further strain improvement. Mutants with enhanced salinomycin production were detected at a high incidence (7 to 12%) among spontaneous isolates resistant to streptomycin (Str(r)), gentamicin, or rifampin (Rif(r)). Finally, we successfully demonstrated improvement of the salinomycin productivity of the industrial strain by 2.3-fold by introducing a triple mutation. The Str(r) mutant was shown to have a point mutation within the rpsL gene (encoding ribosomal protein S12). Likewise, the Rif(r) mutant possessed a mutation in the rpoB gene (encoding the RNA polymerase beta subunit). Increased productivity of salinomycin in the Str(r) mutant (containing the K88R mutation in the S12 protein) may be a result of an aberrant protein synthesis mechanism. This aberration may manifest itself as enhanced translation activity in stationary-phase cells, as we have observed with the poly(U)-directed cell-free translation system. The K88R mutant ribosome was characterized by increased 70S complex stability in low Mg(2+) concentrations. We conclude that this aberrant protein synthesis ability in the Str(r) mutant, which is a result of increased stability of the 70S complex, is responsible for the remarkable salinomycin production enhancement obtained.  相似文献   

6.
7.
Mutations in the rpoB gene of Escherichia coli result in resistance to the antibiotic rifampicin (Rif(r)) by altering the beta subunit of RNA polymerase. Previous studies have identified 39 single base substitutions in the rpoB gene that lead to Rif(r) at 37 degrees C and an additional two mutations that result in temperature sensitive cells. We have extended this work and identified an additional 30 single base substitutions that result in the Rif(r) phenotype. With these mutations the rpoB/Rif(r) system now allows the monitoring of 69 base substitutions at 37 degrees at 37 sites (base pairs) distributed among 24 coding positions. Each of the six possible base substitutions is represented by 8-17 mutations. More than 90% of the mutations are within a small enough region of the rpoB gene to allow PCR amplification with a single pair of oligonucleotide primers, followed by sequencing with a single primer, leading to rapid analysis of numerous mutations. The remaining mutations can be monitored using an additional primer pair. To calibrate this system we sequenced over 500 mutations in rpoB occurring spontaneously or generated by different mutagens and mutators with known specificity. These results show that rpoB/Rif(r) is an accurate and easy to employ detection system, and offers the advantage of allowing analysis of mutations occurring on the chromosome rather than on an extrachromosomal element. The mutS, mutT, mutY, M mutators, as well as the mutagenic agents ethyl methanesulfonate (EMS), ultraviolet (UV) irradiation, 2-aminopurine (2AP), 5-azacytidine (5AZ), and cisplatin (CPT) gave results predicted by their characterized specificities. The number of different sequence contexts is sufficient to reveal significant hotspots among the spontaneous mutS, 2-aminopurine, ultraviolet light, 5-azacytidine, and cisplatin mutational spectra. The cisplatin distribution is particularly striking, with 68% of the mutations resulting from an A:T-->T:A transversion at a single site. Because of the conservation of key regions of RNA polymerase among many microorganisms, using the Rif(r)/rpoB system may be a general method for studying mutational processes in microorganisms without well developed genetic systems.  相似文献   

8.
In Streptomyces coelicolor A3(2), deletion of relA or a specific mutation in rplK ( relC) results in an inability to synthesize ppGpp (guanosine 5'-diphosphate 3'-diphosphate) and impairs production of actinorhodin. We have found that certain rifampicin-resistant ( rif) mutants isolated from either relA or relC strains regain the ability to produce actinorhodin at the same level as the wild-type strain, although their capacity to synthesize ppGpp is unchanged. These rif mutants were found to have a missense mutation in the rpoB gene that encodes the RNA polymerase beta-subunit. This rpoB mutation was shown to be responsible for the observed changes in phenotype, as demonstrated by gene replacement experiments. Gene expression analysis revealed that the restoration of actinorhodin production in both relA and relC strains is accompanied by increased expression of the pathway-specific regulator gene actII-ORF4, which is normally decreased in the rel mutants. In addition to the restoration of antibiotic production, the rif mutants also exhibited a lower rate of RNA synthesis compared to the parental strain when grown in a rich medium, suggesting that these mutant RNA polymerases behave like "stringent" RNA polymerases. These results indicate that rif mutations can alter gene expression patterns independently of ppGpp. We propose that RNA polymerases carrying particular rif mutations in the beta-subunit can functionally mimic the modification induced by binding of ppGpp.  相似文献   

9.
10.
11.
12.
X Qiu  X Yan  M Liu  R Han 《PloS one》2012,7(8):e43114
Rifampin resistant (Rif(R)) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The Rif(R) mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif(R) mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif(R) mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif(R) mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing Rif(R) mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif(R) mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregualted dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic association between the symbionts and their entomopathogenic nematode hosts.  相似文献   

13.
14.
An isogenic pair of relA+ and relA strains of Escherichia coli B/r with a mutation in the RNA polymerase subunit gene rpoB (Rifr) was isolated in which the relationship between guanosine tetraphosphate (ppGpp) concentration and stable RNA (rRNA, tRNA) gene activity was altered. The RNA polymerase in the rpoB strains was found to be about 20-fold more sensitive to ppGpp with respect to its stable RNA promoter activity than was the wild-type enzyme. The existence of such mutants is consistent with the idea that ppGpp interacts with the RNA polymerase enzyme and thereby alters its promoter selectivity, i.e., reduces its affinity for the stable RNA promoters. Under most conditions, the rpoB mutants had a reduced rate of growth and about a 10-fold-reduced intracellular concentration of ppGpp compared with the rpoB wild-type strains. The reduction of the level of ppGpp in the rpoB mutants during exponential growth was presumably a reflection of an indirect effect of the rpoB mutation on the control of relA-independent ppGpp metabolism.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号