首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

2.
Zhang TL  Ding YS 《Amino acids》2007,33(4):623-629
Compared with the conventional amino acid composition (AA), the pseudo amino acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence; this remarkably enhances the power to use a discrete model for predicting various attributes of a protein. In this study, based on the concept of Chou's PseAA, a 46-D (dimensional) PseAA was formulated to represent the sample of a protein and a new approach based on binary-tree support vector machines (BTSVMs) was proposed to predict the protein structural class. BTSVMs algorithm has the capability in solving the problem of unclassifiable data points in multi-class SVMs. The results by both the 10-fold cross-validation and jackknife tests demonstrate that the predictive performance using the new PseAA (46-D) is better than that of AA (20-D), which is widely used in many algorithms for protein structural class prediction. The results obtained by the new approach are quite encouraging, indicating that it can at least play a complimentary role to many of the existing methods and is a useful tool for predicting many other protein attributes as well.  相似文献   

3.
The successful prediction of protein subcellular localization directly from protein primary sequence is useful to protein function prediction and drug discovery. In this paper, by using the concept of pseudo amino acid composition (PseAAC), the mycobacterial proteins are studied and predicted by support vector machine (SVM) and increment of diversity combined with modified Mahalanobis Discriminant (IDQD). The results of jackknife cross-validation for 450 non-redundant proteins show that the overall predicted successful rates of SVM and IDQD are 82.2% and 79.1%, respectively. Compared with other existing methods, SVM combined with PseAAC display higher accuracies.  相似文献   

4.
The study of rat proteins is an indispensable task in experimental medicine and drug development. The function of a rat protein is closely related to its subcellular location. Based on the above concept, we construct the benchmark rat proteins dataset and develop a combined approach for predicting the subcellular localization of rat proteins. From protein primary sequence, the multiple sequential features are obtained by using of discrete Fourier analysis, position conservation scoring function and increment of diversity, and these sequential features are selected as input parameters of the support vector machine. By the jackknife test, the overall success rate of prediction is 95.6% on the rat proteins dataset. Our method are performed on the apoptosis proteins dataset and the Gram-negative bacterial proteins dataset with the jackknife test, the overall success rates are 89.9% and 96.4%, respectively. The above results indicate that our proposed method is quite promising and may play a complementary role to the existing predictors in this area.  相似文献   

5.
许嘉 《生物信息学》2013,11(4):297-299
抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展。提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。  相似文献   

6.
Given a protein sequence, how to identify its subcellular location? With the rapid increase in newly found protein sequences entering into databanks, the problem has become more and more important because the function of a protein is closely correlated with its localization. To practically deal with the challenge, a dataset has been established that allows the identification performed among the following 14 subcellular locations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasma membrane, and (14) vacuole. Compared with the datasets constructed by the previous investigators, the current one represents the largest in the scope of localizations covered, and hence many proteins which were totally out of picture in the previous treatments, can now be investigated. Meanwhile, to enhance the potential and flexibility in taking into account the sequence‐order effect, the series‐mode pseudo‐amino‐acid‐composition has been introduced as a representation for a protein. High success rates are obtained by the re‐substitution test, jackknife test, and independent dataset test, respectively. It is anticipated that the current automated method can be developed to a high throughput tool for practical usage in both basic research and pharmaceutical industry. © 2003 Wiley‐Liss, Inc.  相似文献   

7.
It is a critical challenge to develop automated methods for fast and accurately determining the structures of proteins because of the increasingly widening gap between the number of sequence-known proteins and that of structure-known proteins in the post-genomic age. The knowledge of protein structural class can provide useful information towards the determination of protein structure. Thus, it is highly desirable to develop computational methods for identifying the structural classes of newly found proteins based on their primary sequence. In this study, according to the concept of Chou's pseudo amino acid composition (PseAA), eight PseAA vectors are used to represent protein samples. Each of the PseAA vectors is a 40-D (dimensional) vector, which is constructed by the conventional amino acid composition (AA) and a series of sequence-order correlation factors as original introduced by Chou. The difference among the eight PseAA representations is that different physicochemical properties are used to incorporate the sequence-order effects for the protein samples. Based on such a framework, a dual-layer fuzzy support vector machine (FSVM) network is proposed to predict protein structural classes. In the first layer of the FSVM network, eight FSVM classifiers trained by different PseAA vectors are established. The 2nd layer FSVM classifier is applied to reclassify the outputs of the first layer. The results thus obtained are quite promising, indicating that the new method may become a useful tool for predicting not only the structural classification of proteins but also their other attributes.  相似文献   

8.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

9.
Ma J  Gu H 《BMB reports》2010,43(10):670-676
In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.  相似文献   

10.

Background  

Predicting the subcellular localization of proteins is important for determining the function of proteins. Previous works focused on predicting protein localization in Gram-negative bacteria obtained good results. However, these methods had relatively low accuracies for the localization of extracellular proteins. This paper studies ways to improve the accuracy for predicting extracellular localization in Gram-negative bacteria.  相似文献   

11.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

12.
Many proteins bear multi-locational characteristics, and this phenomenon is closely related to biological function. However, most of the existing methods can only deal with single-location proteins. Therefore, an automatic and reliable ensemble classifier for protein subcellular multi-localization is needed. We propose a new ensemble classifier combining the KNN (K-nearest neighbour) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic, Gram-negative bacterial and viral proteins based on the general form of Chou's pseudo amino acid composition, i.e., GO (gene ontology) annotations, dipeptide composition and AmPseAAC (Amphiphilic pseudo amino acid composition). This ensemble classifier was developed by fusing many basic individual classifiers through a voting system. The overall prediction accuracies obtained by the KNN-SVM ensemble classifier are 95.22, 93.47 and 80.72% for the eukaryotic, Gram-negative bacterial and viral proteins, respectively. Our prediction accuracies are significantly higher than those by previous methods and reveal that our strategy better predicts subcellular locations of multi-location proteins.  相似文献   

13.
Shi JY  Zhang SW  Pan Q  Zhou GP 《Amino acids》2008,35(2):321-327
In the Post Genome Age, there is an urgent need to develop the reliable and effective computational methods to predict the subcellular localization for the explosion of newly found proteins. Here, a novel method of pseudo amino acid (PseAA) composition, the so-called “amino acid composition distribution” (AACD), is introduced. First, a protein sequence is divided equally into multiple segments. Then, amino acid composition of each segment is calculated in series. After that, each protein sequence can be represented by a feature vector. Finally, the feature vectors of all sequences thus obtained are further input into the multi-class support vector machines to predict the subcellular localization. The results show that AACD is quite effective in representing protein sequences for the purpose of predicting protein subcellular localization.  相似文献   

14.
Yuan Z  Burrage K  Mattick JS 《Proteins》2002,48(3):566-570
A Support Vector Machine learning system has been trained to predict protein solvent accessibility from the primary structure. Different kernel functions and sliding window sizes have been explored to find how they affect the prediction performance. Using a cut-off threshold of 15% that splits the dataset evenly (an equal number of exposed and buried residues), this method was able to achieve a prediction accuracy of 70.1% for single sequence input and 73.9% for multiple alignment sequence input, respectively. The prediction of three and more states of solvent accessibility was also studied and compared with other methods. The prediction accuracies are better than, or comparable to, those obtained by other methods such as neural networks, Bayesian classification, multiple linear regression, and information theory. In addition, our results further suggest that this system may be combined with other prediction methods to achieve more reliable results, and that the Support Vector Machine method is a very useful tool for biological sequence analysis.  相似文献   

15.
Sun XD  Huang RB 《Amino acids》2006,30(4):469-475
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy. The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines may still need to be further improved in future investigation.  相似文献   

16.
用离散增量结合支持向量机方法预测蛋白质亚细胞定位   总被引:3,自引:0,他引:3  
赵禹  赵巨东  姚龙 《生物信息学》2010,8(3):237-239,244
对未知蛋白的功能注释是蛋白质组学的主要目标。一个关键的注释是蛋白质亚细胞定位的预测。本文应用离散增量结合支持向量机(ID_SVM)的方法,对阳性革兰氏细菌蛋白的5类亚细胞定位点进行预测。在独立检验下,其总体预测成功率为89.66%。结果发现ID_SVM算法对预测的成功率有很大改进。  相似文献   

17.
Proteins are generally classified into the following 12 subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic reticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nucleus, 10) peroxisome, 11) plasma membrane, and 12) vacuole. Because the function of a protein is closely correlated with its subcellular location, with the rapid increase in new protein sequences entering into databanks, it is vitally important for both basic research and pharmaceutical industry to establish a high throughput tool for predicting protein subcellular location. In this paper, a new concept, the so-called "functional domain composition" is introduced. Based on the novel concept, the representation for a protein can be defined as a vector in a high-dimensional space, where each of the clustered functional domains derived from the protein universe serves as a vector base. With such a novel representation for a protein, the support vector machine (SVM) algorithm is introduced for predicting protein subcellular location. High success rates are obtained by the self-consistency test, jackknife test, and independent dataset test, respectively. The current approach not only can play an important complementary role to the powerful covariant discriminant algorithm based on the pseudo amino acid composition representation (Chou, K. C. (2001) Proteins Struct. Funct. Genet. 43, 246-255; Correction (2001) Proteins Struct. Funct. Genet. 44, 60), but also may greatly stimulate the development of this area.  相似文献   

18.
Xiao X  Shao S  Ding Y  Huang Z  Chou KC 《Amino acids》2006,30(1):49-54
Summary. The avalanche of newly found protein sequences in the post-genomic era has motivated and challenged us to develop an automated method that can rapidly and accurately predict the localization of an uncharacterized protein in cells because the knowledge thus obtained can greatly speed up the process in finding its biological functions. However, it is very difficult to establish such a desired predictor by acquiring the key statistical information buried in a pile of extremely complicated and highly variable sequences. In this paper, based on the concept of the pseudo amino acid composition (Chou, K. C. PROTEINS: Structure, Function, and Genetics, 2001, 43: 246–255), the approach of cellular automata image is introduced to cope with this problem. Many important features, which are originally hidden in the long amino acid sequences, can be clearly displayed through their cellular automata images. One of the remarkable merits by doing so is that many image recognition tools can be straightforwardly applied to the target aimed here. High success rates were observed through the self-consistency, jackknife, and independent dataset tests, respectively.  相似文献   

19.
Predicting protein quaternary structure by pseudo amino acid composition   总被引:1,自引:0,他引:1  
Chou KC  Cai YD 《Proteins》2003,53(2):282-289
In the protein universe, many proteins are composed of two or more polypeptide chains, generally referred to as subunits, that associate through noncovalent interactions and, occasionally, disulfide bonds. With the number of protein sequences entering into data banks rapidly increasing, we are confronted with a challenge: how to develop an automated method to identify the quaternary attribute for a new polypeptide chain (i.e., whether it is formed just as a monomer, or as a dimer, trimer, or any other oligomer). This is important, because the functions of proteins are closely related to their quaternary attribute. For example, some critical ligands only bind to dimers but not to monomers; some marvelous allosteric transitions only occur in tetramers but not other oligomers; and some ion channels are formed by tetramers, whereas others are formed by pentamers. To explore this problem, we adopted the pseudo amino acid composition originally proposed for improving the prediction of protein subcellular location (Chou, Proteins, 2001; 43:246-255). The advantage of using the pseudo amino acid composition to represent a protein is that it has paved a way that can take into account a considerable amount of sequence-order effects to significantly improve prediction quality. Results obtained by resubstitution, jack-knife, and independent data set tests, have indicated that the current approach might be quite promising in dealing with such an extremely complicated and difficult problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号