首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During recent work examining the effects of Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) invasion on native reptile assemblages in coastal heathland vegetation in Eastern Australia, unplanned spot‐spraying of glyphosate occurred at some of our experimental sites invaded by Bitou Bush. We used this unexpected herbicide application as an opportunity to provide a preliminary assessment of the short‐term impacts on reptiles of glyphosate spot‐spraying of Bitou Bush. Using an M‐BARCI design, we compared reptile assemblages among uninvaded (reference) sites, invaded (control) sites and invaded and sprayed (impact) sites before and after spraying. We found no significant short‐term (7 – 10 months) differences in reptile abundance, species richness or assemblage composition among invaded, uninvaded and sprayed sites before and after glyphosate application. We cautiously interpret our results to generate a preliminary finding that spot‐spraying of Bitou Bush with glyphosate appears not to have a deleterious effect on reptile assemblages at seven and ten months following herbicide application. While we would not recommend basing management decisions on the outcomes of our study alone, we suggest that our findings can be used to assist in the development of strategic analyses of glyphosate impacts on native flora and fauna.  相似文献   

2.
Worldwide, extreme climatic events such as drought and heatwaves are associated with forest mortality. However, the precise drivers of tree mortality at individual and stand levels vary considerably, with substantial gaps in knowledge across studies in biomes and continents. In 2010–2011, a drought‐associated heatwave occurred in south‐western Australia and drove sudden and rapid forest canopy collapse. Working in the Northern Jarrah (Eucalyptus marginata) Forest, we quantified the response of key overstory (E. marginata, Corymbia calophylla) and midstory (Banksia grandis, Allocasuarina fraseriana) tree species to the extreme climate event. Using transects spanning a gradient of drought impacts (minimal (50–100 m), transitional (100–150 m) and severe (30–60 m)), tree species mortality in relation to stand characteristics (stand basal area and stem density) and edaphic factors (soil depth) was determined. We show differential mortality between the two overstory species and the two midstory species corresponding to the drought‐associated heatwave. The dominant overstory species, E. marginata, had significantly higher mortality (~19%) than C. calophylla (~7%) in the severe zone. The midstory species, B. grandis, demonstrated substantially higher mortality (~59%) than A. fraseriana (~4%) in the transitional zone. Banksia grandis exhibited a substantial shift in structure in response to the drought‐associated heatwave in relation to tree size, basal area and soil depth. This study illustrates the role of climate extremes in driving ecosystem change and highlights the critical need to identify and quantify the resulting impact to help predict future forest die‐off events and to underpin forest management and conservation.  相似文献   

3.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

4.
Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky‐31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host‐grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë‐associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high‐ or low‐endophyte infection rate were broadcast seeded into 2 × 2‐m plots in a tilled, old‐field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co‐occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high‐endophyte S. pratensis increased plant richness relative to low‐endophyte cultivars. However, as expected, high‐endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co‐occurring biotic communities.  相似文献   

5.
Invasion biology is an important element of global environmental change and represents one of the main threats to biodiversity. American species were introduced to Tenerife after the Spanish conquest during the eighteenth century, as is the case for Agave americana and Opuntia dillenii. The long period of naturalization and adaptation of these species has led them to become two of the most dispersed introduced species of the archipelago. We analyzed several eradication management processes in an area intensively invaded by both O. dillenii and A. americana. Three treatments were randomly applied: mechanical removal, use of herbicide (glyphosate at 10% volume), and mechanical and herbicide applied together. Both the effectiveness of the treatments to remove the target exotic species biovolume and the impact of the eradication methods on species richness and species composition of the area were analyzed. We found that the treatments had an impact on species composition but not on species richness. Species composition was mainly affected by mechanical treatment. The effect caused by the mechanical removal of the exotic target species in species composition is minor after 4 years, and is related to a higher dominance of shrub species typical of coastal shrubland and of annual or pioneer species. The control of O. dillenii and A. americana is evident from insignificant recovery 4 years after treatment application. A mechanical and herbicide treatment together, allowed not only the immediate removal of large individuals but also the herbicidal control of smaller ones.  相似文献   

6.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

7.
Reestablishing native perennial vegetation in annual grass‐invaded rangelands is critical to restoring ecosystems. Control of exotics, often achieved with preemergent herbicides, is essential for successful restoration of invaded rangelands. Unfortunately, desirable species cannot be seeded simultaneously with preemergent herbicide application due to nontarget damage. To avoid this, seeding is commonly delayed at least 1 year. Delaying seeding increases the likelihood that annual grasses will begin reestablishing and compete with seeded species. Activated carbon (AC) can provide preemergent herbicide protection for seeded species because it adsorbs and deactivates herbicides. Previous studies suggest that a cylindrical herbicide protection pod (HPP), containing AC and seeds, allows desired species to be seeded simultaneously with the application of the preemergent herbicide imazapic. Unfortunately, imazapic is only effective at controlling annual grasses for 1–2 years. Indaziflam is a new preemergent herbicide which exhibits longer soil activity, with which HPPs may be useful. To assess this possibility, we evaluated seeding two native species (Wyoming big sagebrush [Artemisia tridentata Nutt ssp. wyomingensis] and bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Á. Löve]), both incorporated into HPPs and as bare seed, at four application rates of indaziflam in a grow room study. HPPs protected seeded species at low, mid, and high rates of indaziflam. The abundance and size of plants was greater in HPPs compared to bare seed treatments. These results suggest that HPPs can be used to seed native grasses and shrubs simultaneously with indaziflam application.  相似文献   

8.
9.
Conservation of North American grasslands is hampered by the impact of invasive herbaceous species. Selective control of these plants, although desirable, is complicated by the shared physiology and phenology of the invader and the native components of the invaded plant community. Fortunately, there is evidence that some management practices, such as prescribed fire, herbicide, and mowing, can cause differential responses in native and invasive grassland species. However, timing of treatment is critical, and fire has been shown to increase rates of invasion when implemented during the dormant season. Bothriochloa ischaemum, an introduced C4 Eurasian grass is an increasing problem in grasslands, particularly in southern and central regions of North America. To date, there has been little success in effective selective control. Two invaded grassland sites representative of Blackland Prairie and Edwards Plateau ecoregions were subjected to two growing‐season prescribed fire treatments, single and double herbicide applications, and single and double mowing treatments. Mowing had no effect on either B. ischaemum or other dominant species at either site one‐year posttreatment. However, growing‐season fire and herbicide were both effective at reducing the abundance of B. ischaemum, with other codominant species responding either negatively to herbicide or neutrally or positively to fire. The vulnerability of B. ischaemum to growing‐season fire may be associated with the ecology of its native range. The negative growth response to growing‐season fire, combined with its lower implementation costs, indicates that this method warrants further investigation as a selective management tool for other problematic species in invaded grasslands.  相似文献   

10.
Following its introduction in the late 1960s, Broussonetia papyrifera L. Vent. Moraceae (paper mulberry) has emerged as a major exotic invasive species in Ghana's forest ecosystems. This study was carried out to assess the effects of B. papyrifera invasion on community composition in forest and forest–savannah transition ecosystems. Comparative and removal experiments were conducted in paired B. papyrifera invaded versus uninvaded plots. In the comparative assessment, species composition was found to be similar in both invaded and uninvaded plots. However, relative per cent cover of resident species and guilds including Chromolaena odorata, indigenous broadleaves and indigenous grasses were significantly lower in invaded plots. Seven months after B. papyrifera was experimentally removed from invaded stands, cover by indigenous broadleaves increased by 35%, as against only 5% in control plots at the forest site. However, at the transition site, the increase in per cent cover of indigenous broadleaves (18%) was not significantly different from control (2.5%) plots. We conclude that B. papyrifera has the capacity to reduce the abundance of indigenous broadleaf species, although its removal is more likely to favour regeneration in a forest than a forest–savannah transition ecosystem.  相似文献   

11.
Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100–120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40–128). Chromosome‐specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13–20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One?four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter‐chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.  相似文献   

12.
Species of Lasiodiplodia are important pathogens of a wide variety of plants covering a wide geographical distribution. These fungi can be associated with different symptoms such as stem cankers, shoot blights, fruit rots, dieback and gummosis. Diseases caused by Lasiodiplodia were surveyed on Eucalyptus urophylla × grandis, Polyscias balfouriana and Bougainvillea spectabilis in a nursery in southern China. Based on morphology characteristics and phylogenetic analyses of ITS rDNA sequences and translation elongation factor 1‐alpha (TEF‐1α) gene regions, four species of Lasiodiplodia were identified. Lasiodiplodia theobromae was identified from E. urophylla × grandis, P. balfouriana and B. spectabilis. L. hormozganensis, L. iraniensis and L. pseudotheobromae were identified from B. spectabilis. To our knowledge, with the exception of L. theobromae on E. urophylla × grandis, this study represents the first report of these fungi on the host plants. Pathogenicity tests showed that all Lasiodiplodia spp. obtained in this study are virulent to E. urophylla × grandis and B. spectabilis, and L. theobromae was virulent to P. balfouriana.  相似文献   

13.
Mutualisms between invasive ants and honeydew‐producing insects can have widespread negative effects on natural ecosystems. This is becoming an increasingly serious problem worldwide, causing certain ecosystems to change radically. Management of these abundant and influential mutualistic species is essential if the host ecosystem is to recover to its former non‐invaded status. This negative effect is particularly prevalent on some tropical islands, including Cousine Island, Seychelles. On this island, the invasive ant Pheidole megacephala has caused serious indirect damage to the threatened native Pisonia grandis trees via a mutualism with an invasive scale insect, Pulvinaria urbicola. We aimed to suppress the ant, thereby decoupling the mutualism and enabling recovery of the Pisonia trees. We treated all areas where ant pressure was high with a selective formicidal bait, which was deployed in custom‐made bait stations designed to avoid risk of treatment to endemic fauna. In the treated area, ant foraging activity was reduced by 93 percent and was followed by a 100 percent reduction in scale insect density. Abundance of endemic herbivorous insects and herbivorous activity increased significantly, however, after the decline in mutualistic species densities. Despite the native herbivore increase, there was considerable overall improvement in Pisonia shoot condition and an observed increase in foliage density. Our results demonstrate the benefit of strategic management of highly mutualistic alien species to the native Pisonia trees. It also supports the idea that area‐wide suppression is a feasible alternative to eradication for achieving positive conservation management at the level of the forest ecosystem.  相似文献   

14.
Native plant individuals often persist within communities dominated by exotics but the influence of this exposure on native populations is poorly understood. Selection for traits contributing to competitive ability may lead to native plant populations that are more tolerant of the presence of exotic invaders. In this way, long‐term coexistence with an exotic may confer competitive advantages to remnant (experienced) native populations and be potentially beneficial to restoration. In past studies we have documented genetic differentiation within native grass populations exposed to the exotic invader Russian knapweed (Acroptilon repens). Here, we examine populations of a cool‐season grass, needle‐and‐thread (Hesperostipa comata [Trin. & Rupr.]) and a warm season, alkali sacaton (Sporobolus airoides [Torr.]) collected from Russian knapweed‐invaded sites and adjacent noninvaded sites to assess their relative competitive ability against a novel exotic neighbor, Canada thistle (Cirsium arvense). Experienced S. airoides (from within A. repens invasions) appear to better tolerate (accumulate biomass, leaf nitrogen content, and to initiate new tillers) the presence of a novel competitor (C. arvense). Experienced and inexperienced H. comata genets differ in their response to the presence of C. arvense. Relative neighbor effects of native grasses on C. arvense were generally greater from experienced grasses. The ability to compete with novel neighbors may be driven by general competitive traits rather than species‐specific coevolutionary trajectories. Irrespective of competitive mechanisms, the conservation of native species populations within weed invasions may provide an important restoration tool by retaining unique components of native gene pools selected by competitive interactions with exotics.  相似文献   

15.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

16.
The invasion of Solidago is one of the main threats to the biodiversity of natural meadows, leading to changes in animal and plant communities, as well as soil features. We compared effects of soil microclimatic conditions (temperature and moisture) and the availability of potential protein sources (dry mass of epigean invertebrates) on ants between meadows invaded by Solidago altissima and S. canadensis and those uninvaded. Our results showed that the ant communities were different between the uninvaded and invaded meadows, with reduction of ant abundance and species richness in the latter. Myrmica spp. were abundant in the uninvaded meadows, whereas Lasius niger was the dominant species in the invaded ones. We found that the lower moisture negatively influenced the abundance of Myrmica species in the Solidago‐invaded meadows. Moreover, the epigean invertebrate dry mass, as an estimation of the availability of protein sources, varied between the two types of meadows, with a higher abundance in the uninvaded ones. The abundance of Myrmica ants with narrower ecological requirements showed a positive correlation with the invertebrate biomass in the invaded meadows. In contrast, the abundance of L. niger with broad ecological requirements was negatively correlated with the invertebrate biomass in the invaded meadows, possibly as a strategy to reduce interspecific competition. Our study showed that the invasion of Solidago plants caused changes in the abundance and species composition of ant communities through modification in microhabitat conditions, that is, decreasing soil moisture, reducing biomass and changing distribution of prey invertebrates.  相似文献   

17.
Droughts in the southwest United States have led to major forest and grassland die‐off events in recent decades, suggesting plant community and ecosystem shifts are imminent as native perennial grass populations are replaced by shrub‐ and invasive plant‐dominated systems. These patterns are similar to those observed in arid and semiarid systems around the globe, but our ability to predict which species will experience increased drought‐induced mortality in response to climate change remains limited. We investigated meteorological drought‐induced mortality of nine dominant plant species in the Colorado Plateau Desert by experimentally imposing a year‐round 35% precipitation reduction for eight continuous years. We distributed experimental plots across numerous plant, soil, and parent material types, resulting in 40 distinct sites across a 4,500 km2 region of the Colorado Plateau Desert. For all 8 years, we tracked c. 400 individual plants and evaluated mortality responses to treatments within and across species, and through time. We also examined the influence of abiotic and biotic site factors in driving mortality responses. Overall, high mortality trends were driven by dominant grass species, including Achnatherum hymenoides, Pleuraphis jamesii, and Sporobolus cryptandrus. Responses varied widely from year to year and dominant shrub species were generally resistant to meteorological drought, likely due to their ability to access deeper soil water. Importantly, mortality increased in the presence of invasive species regardless of treatment, and native plant die‐off occurred even under ambient conditions, suggesting that recent climate changes are already negatively impacting dominant species in these systems. Results from this long‐term drought experiment suggest major shifts in community composition and, as a result, ecosystem function. Patterns also show that, across multiple soil and plant community types, native perennial grass species may be replaced by shrubs and invasive annuals in the Colorado Plateau Desert.  相似文献   

18.
Ongoing changes in natural diversity due to anthropogenic activities can alter ecosystem functioning. Particular attention has been given to research on biodiversity loss and how those changes can affect the functioning of ecosystems, and, by extension, human welfare. Few studies, however, have addressed how increased diversity due to establishment of nonindigenous species (NIS) may affect ecosystem function in the recipient communities. Marine algae have a highly important role in sustaining nearshore marine ecosystems and are considered a significant component of marine bioinvasions. Here, we examined the patterns of respiration and light‐use efficiency across macroalgal assemblages with different levels of species richness and evenness. Additionally, we compared our results between native and invaded macroalgal assemblages, using the invasive brown macroalga Sargassum muticum (Yendo) Fensholt as a model species. Results showed that the presence of the invader increased the rates of respiration and production, most likely as a result of the high biomass of the invader. This effect disappeared when S. muticum lost most of its biomass after senescence. Moreover, predictability–diversity relationships of macroalgal assemblages varied between native and invaded assemblages. Hence, the introduction of high‐impact invasive species may trigger major changes in ecosystem functioning. The impact of S. muticum may be related to its greater biomass in the invaded assemblages, although species interactions and seasonality influenced the magnitude of the impact.  相似文献   

19.
Exotic plant invasions are especially problematic because reestablishment of native perennial vegetation is rarely successful. It may be more appropriate to treat exotic plant infestations that still have some remaining native vegetation. We evaluated this restoration strategy by measuring the effects of spring burning, fall burning, fall applied imazapic, spring burning with fall applied imazapic, and fall burning with fall applied imazapic on the exotic annual grass, medusahead (Taeniatherum caput‐medusae (L.) Nevski), and native vegetation at six sites in Oregon for 2 years post‐treatment. Medusahead infestations included in this study had some residual native perennial bunchgrasses and forbs. Burning followed by imazapic application provided the best control of medusahead and resulted in the greatest increases in native perennial vegetation. However, imazapic application decreased native annual forb cover the first year post‐treatment and density the first and second year post‐treatment. The spring burn followed by imazapic application produced an almost 2‐fold increase in plant species diversity compared to the control. The fall burn followed by imazapic application also increased diversity compared to the control. Results of this study indicate that native plants can be promoted in medusahead invasions; however, responses vary by plant functional group and treatment. Our results compared to previous research suggest that restoration of plant communities invaded by exotic annual grass may be more successful if efforts focus on areas with some residual native perennial vegetation. Thus, invasive plant infestations with some native vegetation remaining should receive priority for restoration efforts over near monocultures of invasive plant species.  相似文献   

20.
Abstract We studied the seedbank of floodplain vegetation in three major tropical river systems in northern Australia, which had been variously invaded by the tropical woody weed Mimosa pigra. The sites selected had not previously been treated with tebuthiuron, a herbicide which is widely used in northern Australia to control Mimosa. We collected soil seedbank samples from two floodplain vegetation types (Melaleuca swamp and sedgeland), and, within each type, from areas in which Mimosa was either present or absent. The effects of treatment with tebuthiuron at 15 kg ha?1, twice the usual recommended rate, was subsequently assessed in die laboratory on the soil-seedbank samples. Ordination of the species composition of seedlings which emerged from the soil seedbank samples showed no effect of (i) the vegetation community from which the samples were collected, (ii) the presence of adult Mimosa, or (iii) treatment with tebuthiuron. The effect of tebuthiuron on the emergence and mortality of seedlings from four functional groups (grasses, sedges, forbs and Mimosa) was also tested on the seed bank samples. Emergence was significantly decreased by tebuthiuron only for forbs from Melaleuca swamps. The mortality of Mimosa was significantly higher than that of the other functional groups, but there was some mortality of forb and grass seedlings. Sedges, however, were unaffected. The impact of tebuthiuron on Mimosa depended on soil clay content—in the soils with lowest clay content, tebuthiuron was the most effective in killing Mimosa seedlings. Mortality in forb and grass seedlings, in contrast, was not affected by soil clay content. Tebuthiuron was therefore selective against Mimosa seedlings. However, even at twice the recommended rate of application for killing adult Mimosa, under ideal conditions for distribution of the herbicide through the soil, 43% of Mimosa seedlings survived. Given the size of the Mimosa seedbank under field conditions (~10 000 seeds/m2), tebuthiuron can therefore not be considered an effective herbicide against Mimosa seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号