首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new triterpenoid saponins were isolated and identified from the aerial parts of Fagonia cretica. They were characterized as 3-O-[beta-D-glucopyranosyl (1-->2)-alpha-L-arabinopyranosyl] hederagenin 28-O-beta-D-glucopyranosyl ester, 3-O-[beta-D-glucopyranosyl (1-->2)-alpha-L-arabinopyranosyl] oleanolic acid 28-O-[beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D-glucopyranosyl (1-->2)-alpha-L-arabinopyranosyl] 27-hydroxy oleanolic acid 28-O-[beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl] ester and 3beta-O-[beta-D-glucopyranosyl (1-->2)-alpha-L-arabinopyranosyl] olean-12-en-27-al-28-oic acid 28-O-[beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl] ester. The structures of the saponins were assigned by spectral analyses (FABMS, 1H, 13C NMR, 1H-1H COSY, TOCSY, HMQC and HMBC spectra) and NOE experiments. To the best of our knowledge the genin 3beta hydroxy olean-12-en-27-al-28-oic acid is new.  相似文献   

2.
Six triterpene saponins, including two new compounds, were isolated from the fruits of Hedera helix L. (Araliaceae). The structures of the new compounds, named helixosides A and B, were established as 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl hederagenin 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, and 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectral data.  相似文献   

3.
Six new triterpenoid saponins have been isolated from the stem bark of Elattostachys apetala together with four known triterpenoid saponins. Three of these new compounds are glycosides of a newly described genin, 29-hydroxyhederagenin (1). On the basis of spectral evidence, the structures of the new saponins were concluded to be alpha-hederin 28-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl] ester (2), sapindoside B 28-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl] ester (3), 3-O-beta-D-xylopyranosyl astrantiasaponin VII (4), 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (5), 3-O-[alpha-L-arabinopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (6), and 3-O-[beta-D-xylopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-gluco pyranosyl-(1-->6)]-beta-D-glucopyranosyl]-29-hydroxyhederagenin (7).  相似文献   

4.
Four new triterpenoid saponins were isolated from the leaves and stem of branches of Dizygotheca kerchoveana along with seven known ones. The new saponins were respectively characterized as 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid, 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D-3-O-trans-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester and 3-O-[beta-d-3-O-cis-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester. Their structures were elucidated by 1D and 2D NMR experiments, FAB-MS as well as chemical means.  相似文献   

5.
Four new oleanane-type saponins and a known one were isolated from the leaves and stems of Meryta lanceolata. The new saponins were characterised by spectroscopic means and chemical hydrolysis as 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl]oleanolic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D- glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl]oleanolic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-6-O-acetyl glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]oleanolic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester and 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester. The NMR assignments were made by means of HOHAHA, 1H-1H COSY, HMQC, HMBC and NOE difference studies.  相似文献   

6.
Seven oleanane-type saponins were isolated from the leaves and stems of Oreopanax guatemalensis, together with ten known saponins of lupane and oleanane types. The new saponins were respectively characterized as 3-O-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha- L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-beta-D-glucopyranosyl 3beta-hydroxy olean-11,13(18)-dien-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta- D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]3beta-hydroxy olean-11,13(18)-dien-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]3beta, 23 dihydroxy olean-18-en-28-oic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-6-O-acetyl glucopyranosyl-(1-->6)-beta-D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl] hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[beta-D-xylopyranosyl-(1-->2 )-]beta-D-glucopyranosyl]ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl]hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[beta-D-glucopyranosyl-(1-->2)-]beta-D-glucopyranosyl] ester and 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl] hederagenin 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-[alpha-L-arabinofuranosyl-(1-->2)]-beta-D-glucopyranosyl] ester. The structures were determined by spectral analyses. The NMR assignments were made by means of HOHAHA, 1H-1H COSY, HMQC, HMBC spectra and NOE difference studies.  相似文献   

7.
Fu J  Zuo L  Yang J  Chen R  Zhang D 《Phytochemistry》2008,69(7):1617-1624
An oligosaccharide polyester, 1-O-(E)-p-coumaroyl-(3-O-benzoyl)-beta-D-fructofuranosyl-(2-->1)-[6-O-(E)-feruloyl-beta-D-glucopyranosyl-(1-->2)]-[6-O-acetyl-beta-D-glucopyranosyl-(1-->3)-(4-O-acetyl)-beta-D-glucopyranosyl-(1-->3)]-4-O-[4-O-alpha-L-rhamnopyranosyl-(E)-p-coumaroyl]-alpha-D-glucopyranoside (polygalajaponicose I), and four triterpenoid saponins, 3beta, 23, 27-trihydroxy-29-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-olean-12-en-28-oic acid (polygalasaponin XLVII), 3-O-beta-D-glucopyranosyl presenegenin 28-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranosyl ester (polygalasaponin XLVIII), 3-O-beta-D-glucopyranosyl presenegenin 28-O-beta-D-galactopyranosyl-(1-->5)-beta-D-apiofuranosyl-(1-->4)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl ester (polygalasaponin XLIX) and 2beta, 27-dihydroxy-3-O-beta-D-glucopyranosyl 11-oxo-olean-12-en-23, 28-dioic acid 28-O-beta-D-galactopyranosyl-(1-->5)-beta-D-apiofuranosyl-(1-->4)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranosyl ester (polygalasaponin L), in addition to five known compounds have been isolated from the roots of Polygala japonica.  相似文献   

8.
Five saponins from the root bark of Aralia elata   总被引:1,自引:0,他引:1  
Five saponins, 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-oleanolic acid 28-O-beta-D-glucopyranosyl ester (aralia-saponin V), 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-echinocystic acid 28-O-beta-D-glucopyranosyl ester (aralia-saponin VI), 3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl]-hederagenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin VII), 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl]-caulophyllogenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin VIII), 3-O-[beta-D-glucopyranosyl (1-->2)-[beta-D-glucopyranosyl(1-->3)]-alpha-L-arabinopyranosyl]-hederagenin 28-O-beta-D-glucopyranosyl ester (aralia-saponin IX), were isolated from the root bark of Aralia elata (Miq.) Seem., together with four known compounds. Their structures were determined on the basis of chemical and spectroscopic methods.  相似文献   

9.
Gao H  Wang Z 《Phytochemistry》2006,67(24):2697-2705
A detailed phytochemical study on the 70% aqueous ethanol extract of stems of Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd led to isolation of five compounds, together with 12 known triterpenoid saponins and three known phenylethanoid glycosides. The structures of the five compounds were elucidated on the basis of analysis of spectroscopic data and physicochemical properties as: 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-glucopyranosyl ester (1), 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-D-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (2), 2alpha, 3beta, 23-trihydroxyurs-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (3), 3-beta-[(beta-D-glucopyranosyl-(1-->3)-O-alpha-L-arabinopyranosyl)oxy]-23-hydroxy-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (4) and 3-beta-[(alpha-L-xylopyranosyl-(1-->2)-O-alpha-L-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (5), named mutongsaponin A, B, C, D and E, respectively.  相似文献   

10.
Oleanane saponins from Gymnema sylvestre   总被引:3,自引:0,他引:3  
Ye WC  Zhang QW  Liu X  Che CT  Zhao SX 《Phytochemistry》2000,53(8):893-899
Six oleanane-type saponins, along with two known triterpene saponins, were isolated from the leaves of Gymnema sylvestre. The structures of the oleanane triterpene glycosides were characterized as longispinogenin 3-O-beta-D-glucuronopyranoside, 21 beta-benzoylsitakisogenin 3-O-beta-D-glucuronopyranoside, 3-O-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester, oleanolic acid 3-O-beta-D-xylopyranosyl(1-->6)-beta-D-glucopyranosyl(1-->6)-beta-D- glucopyranoside, 3-O-beta-D-xylopyranosyl(1-->6)-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester and 3-O-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranosyl oleanolic acid 28-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranosyl ester on the basis of hydrolysis and spectral evidence, including 1D- and 2D-NMR (TOCSY, ROESY, HMQC and HMBC) and FABMS analyses.  相似文献   

11.
Saponins from Lonicera bournei   总被引:1,自引:0,他引:1  
The lupane-triterpene glycosides, bourneioside A and bourneioside B, and two known saponins were isolated from Lonicera bournei Hemsl. The structures of bourneioside A and B were elucidated as 3-O-beta-D-glucopyranosyl-23-hydroxy-lup-20(29)-en-28-oic acid-28-O-beta-D-glucopyranosyl ester and 3-O-beta-D-glucopyranosyl-23-hydroxy-lup-20(29)-en-28-oic acid-28-O-[beta-D-glucopyranosyl-(1 --> 6)-beta-D-glucopyranosyl] ester, respectively, on the basis of spectral data and chemical evidence.  相似文献   

12.
In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium   总被引:10,自引:0,他引:10  
Seven oleanane-type triterpene saponins were isolated from the methanolic extract of the aerial parts of Bupleurum rotundifolium. They were identified on the basis of their spectral data as 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl] echinocystic acid (saponin 1), 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->2)-beta-D-fucopyranosyl] 11-methoxy-primulagenin A (saponin 2), rotundioside E (saponin 3), rotundioside F (saponin 4), 3beta-sulfate, 28-O-[beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl] ester of primulagenin A (saponin 5), rotundioside C (saponin 6) and 3-O-[alpha-L-rhamnopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->2)-beta-D-fucopyranosyl] 11-methoxy-16beta,21alpha,28-trihydroxyolean-12-ene (saponin 7). All these saponins proved to be effective against TPA-induced ear edema in mice. Their ID50 were determined to be 248, 288, 128, 99 and 297 nmol/ear for saponin 1, 2, 3, 4 and 6, respectively. Saponins 3 and 6 were also active on a TPA multiple-dose model of skin chronic inflammation.  相似文献   

13.
Zou K  Zhao Y  Tu G  Cui J  Jia Z  Zhang R 《Carbohydrate research》2000,324(3):182-188
Two diastereomeric saponins, julibrosides J1 (1) and J9 (2), both of which show cytotoxic activity, were obtained from the stem bark of Albizia julibrissin Durazz. On the basis of chemical and spectral evidence [L.B. Ma et al., Carbohydr. Res., 281 (1996) 35-46], the structure of 1 was revised as 3-O-[beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6) -beta-D-glucopyranosyl]-21-O-[(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O- [4-O-((6R)-2-trans-2,6-dimethyl-6-O-(beta-D-quinovopyranosyl)-2,7- octadienoyl)-beta-D-quinovopyranosyl]-2,7-octadienoyl] acacic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->4 )]-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl ester. The diastereoisomer 2 of 1 was identified as 3-O-[beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6) -beta-D-glucopyranosyl]-21-O-[(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O- [4-O-((6S)-2-trans-2,6-dimethyl-6-O-(beta-D-quinovopyranosyl)-2,7- octadienoyl)-beta-D-quinovopyranosyl]-2,7-octadienoyl] acacic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[alpha-L-arabinofuranosyl-(1-->4 )]-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl ester. Saponin 2 is a new saponin named julibroside J9. Both julibrosides J1 and J9 show good inhibitory action against the KB cancer cell line in vitro.  相似文献   

14.
Triterpenoid saponins from Schefflera arboricola   总被引:5,自引:0,他引:5  
Nine triterpenoid saponins were isolated from the leaves and stems of Schefflera arboricola. The saponins were characterised, on the basis of chemical and spectral evidence, as 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucuronopyranosyl] oleanolic acid, 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucuronopyranosyl] echinocystic acid, 3-O-[beta-D-apiofuranosyl-(1-->4)-beta-D-glucuronopyranosyl] oleanolic acid 28-O-beta-D-glucopyranosyl ester, 3-O-alpha-L-ramnopyranosyl-(1-->4)-[alpha-L-arabinopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid, 3-O-alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L-arabinopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester, 3-O-alpha-L-rhamnopyranosyl-(1-->4)-[beta-D-galactopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid, 3-O-alpha-L-rhamnopyranosyl-(1-->4)-[beta-D-galactopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester, 3-O-beta-D-apiofuranosyl-(1-->4)-[alpha-L-arabinopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid and 3-O-beta-D-apiofuranosyl-(1-->4)-[alpha-L-arabinopyranosyl-(1-->2)-] beta-D-glucuronopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl ester.  相似文献   

15.
Chemical investigation of methanol extract of the fruits of Diploclisia glaucescens (Menispermaceae) furnished two new bidesmosidic saponins 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl]phytolaccagenic acid 28-O-beta-D-glucopyranosyl ester, 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]phytolaccagenic acid 28-O-beta-D-glucopyranosyl ester, together with known 3-O-beta-D-glucopyranosylphytolaccagenic acid 28-O-beta-D-glucopyranosyl ester and 3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]serjanic acid 28-O-beta-D-glucopyranosyl ester. The last saponin is reported for the first time from the family Menispermaceae.  相似文献   

16.
Two new triterpenoid saponins, 3-O-{[beta-D-glucopyranosyl-(1-->2)]-[alpha-L-arabinopyranosyl-(1- ->3)]- alpha-L-arabinopyranosyl}-ursolic acid-28-O-[beta-D-glucopyranosyl] ester (indicasaponin A), 3-O-{[beta-D-glucopyranosyl-(1-->2)]-[alpha-L-arabinopyranosyl-(1- ->3)]- alpha-L-arabinopyranosyl}-oleanolic acid-28-O-[beta-D-glucopyranosyl] ester (indicasaponin B) and two known triterpenoid saponins, 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-ur solic acid-28-O-[beta-D-glucopyranosyl] ester, 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-olean olic acid-28-O-[beta-D-glucopyranosyl] ester have been isolated from Fagonia indica. The structures were determined primarily by NMR spectroscopy. The assignment of NMR signals was performed by means of 1H-1H COSY, NOESY, ROESY, TOCSY, HMQC and HMBC experiments.  相似文献   

17.
Two saponins, designated as bacopaside I and II, have been isolated from Bacopa monniera Wettst. and their structures have been elucidated as 3-O-alpha-L-arabinofuranosyl-(1-->2)-[6-O-sulphonyl-beta-D-glucopyranosyl-(1-->3)]-alpha-L-arabinopyranosyl pseudojujubogenin (1) and 3-O-alpha-L-arabinofuranosyl-(1-->2)-[beta-D-glucopyranosyl (1-->3)]-beta-D-glucopyranosyl pseudojujubogenin (2) mainly on the basis of 2D NMR and other spectral analyses.  相似文献   

18.
Five 3-O-glucuronide triterpene saponins (1-5) were isolated from the stem bark of Bersama engleriana Gurke along with two known saponins, polyscias saponin C and aralia saponin 15, and one major C-glycoside xanthone, mangiferin. The structures of the saponins were established mainly by means of spectroscopic methods (one- and two-dimensional NMR spectroscopy as well as FAB-, HRESI-mass spectrometry) as 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-betulinic acid (1), 3-O-[beta-D-glucopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl]-oleanolic acid (2), 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-xylopyranosyl-(1-->6)-beta-d-glucopyranosyl]-oleanolic acid (3), 3-O-[beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-oleanolic acid (4), and 3-O-[beta-d-glucopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl]-28-O-[beta-d-xylopyranosyl-(1-->6)-beta-D-glucopyranosyl]-oleanolic acid (5).  相似文献   

19.
The aqueous methanolic extract of the aerial parts of Fagonia arabica L. (family Zygophyllaceae) was successively fractionated using certain organic solvents. From the ethyl acetate fraction, two flavonoid glycosides were isolated and identified as kaempferol-7-O-rhamnoside and acacetin-7-O-rhamnoside. Four triterpenoidal glycosides were isolated from the butanolic layer. Their structures were elucidated on the basis of the spectral and chemical data as 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranoside oleanolic acid (1), 3-O-alpha-L-arabinopyranosyl quinovic acid 28-O-beta-D-glucopyranoside (2), 3-O-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinosyl oleanolic acid (3) and 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabino-pyranosyl quinovic acid 28-O-beta-D-glucopyranoside (4). The two monodesmosidic saponins 1 and 3 were found to possess strong molluscicidal activity against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni in Egypt (LC90 = 13.33 and 16.44 microM), whereas the other two bidesmosidic saponins 2 and 4 as well as the two flavonoid glycosides were inactive up to 50 microM.  相似文献   

20.
Five triterpenoid saponins, caryocarosides II-22 (3), III-22 (4), II-23 (5), III-23 (6), and II-24 (7), have been isolated from the methanol extract of the stem bark of Caryocar villosum, along with two known saponins (1-2). The seven saponins are glucuronides of hederagenin (II) or bayogenin (III). Caryocaroside II-24 (7) is an unusual galloyl ester saponin acylated on the sugar chain attached to C-28, the 3-O-alpha-L-rhamnopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->3)-beta-D-glucuronopyranosyl hederagenin-28-O-[2-O-galloyl-beta-D-glucopyranosyl] ester. The structures of the saponins were established on the basis of extensive NMR ((13)C, (1)H, COSY, TOCSY, HSQC, HMBC and ROESY) and ESI-MS studies. The cytotoxic activity of saponins 2 and 3 was evaluated in vitro against human keratinocytes. The DOPA-oxidase inhibition and the lipolytic activities were evaluated ex vivo using an explant of human adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号