首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Whole-cell glucose isomerase from a Streptomyces spp. was immobilized by entrapment in gelatin matrices crosslinked with glutaraldehyde. The resultant immobilized enzyme preparation had up to 40% recovery yield of the activity and showed relatively long stabilities during storage and the isomerizing reaction. The storage half-life of the preparation was 19 months at 5°C and the half-life of the enzyme during operation was 260 days in the presence of 1 mM Co2+ and 80 days in the absence of the metal ion. Optimum pH and temperature were 7.5 and 70–75°C, respectively. The Km values for glucose and fructose were 0.29 and 0.46 m, respectively, with a maximum theoretical conversion yield of 56%. The simulation results based on the reversible one-substrate enzyme kinetic model agreed well with the experimental data obtained from a batch reactor. The continuous operation of packed bed reactors demonstrated that some effects of the external film diffusion resistance were apparent at low flow rates of the substrate feed solution, whereas the internal pore diffusion resistance was negligible up to the pellet size used in this work.  相似文献   

2.
Cationic detergent (cetyltrimethylammonium bromide or cetylpyridinium chloride) treatment extracted almost the same amount of glucose isomerase from cells of Streptomyces flavogriseus as mechanical disruption (sonic oscillation or abrasive grinding). The specific activity of the enzyme extracted with cationic detergents was approximately 20% higher than that liberated by mechanical disruption.  相似文献   

3.
Cationic detergent (cetyltrimethylammonium bromide or cetylpyridinium chloride) treatment extracted almost the same amount of glucose isomerase from cells of Streptomyces flavogriseus as mechanical disruption (sonic oscillation or abrasive grinding). The specific activity of the enzyme extracted with cationic detergents was approximately 20% higher than that liberated by mechanical disruption.  相似文献   

4.
Summary A relatively simple method for obtaining an electrophoretically homogeneous preparation of glucose isomerase from Streptomyces nigrificans is described. Extract of disintegrated microbial cells was first heated at 60°C in the presence of Co and Mg ions. Centrifugation and ultrafiltration were followed by ion exchange chromatography on DEAE-cellulose. The fraction with glucose isomerase activity proved to contain no proteins other than the isolated enzyme.  相似文献   

5.
Optimal conditions of the glucose isomerase fixation in a cell are determined by thermal treatment of Str. robeus S-606 biomass. Under these conditions the maximal enzyme activation (by 50-55 percent) is simultaneously observed. Basic properties of glucose isomerase fixed inside the cell are studied in comparison with the enzymic cell-free extract of this enzyme. The pH-optimum for preparations coincides and is observed at pH 7.5; the temperature optimum for the soluble enzyme is 70 degrees C, and for the intracellular enzyme it is higher by 5 degrees C. Thermostability of the intracellular enzyme is also higher than that of the soluble one. The Michaelis constants are calculated for the glucose isomerase preparations in a form of producer cells and enzymic extract: they equal to 0.375 M and 0.285 M, respectively. A comparison of properties permits considering intracellular glucose isomerase as an immobilized enzymic preparation.  相似文献   

6.
The glucose isomerase of Streptomyces albus has been crystallised from a dilute solution of magnesium chloride buffered at a pH of 6.8-7.0. The crystals are in the space group I222 with cell dimensions a = 93.9 A, b = 99.5 A and c = 102.9 A. There is one monomer of the tetrameric molecule per asymmetric unit of the crystal and the packing density is 2.93 A3.Da-1. The tetramer sits on the 222 symmetry point of the crystal. Native data have been recorded to a resolution of 1.9 A and the crystals diffract to about 1.5 A. The alpha-carbon coordinates of the Arthrobacter glucose isomerase and the backbone coordinates of the S. olivochromogenes enzyme determined by other groups have been oriented in the present cell. The structure is currently being refined. The binding of several metal ions to the two metal sites has been analysed.  相似文献   

7.
Glucose isomerase from Streptomyces phaeochromogenes was purified from a commercial preparation, Swetase, by DEAE-cellulose, Bio-Gel A-0.5 m, and hydroxyapatite column chromatographies. It was found to be 2 fractions; F-A, not adsorbed on hydroxyapatite and F-B, adsorbed on hydroxyapatite. They were homogeneous in ordinary and SDS-PAGE and had similarities in some enzymatic and physico-chemical properties. The differences, however, were found in the N-terminal amino acid, which was only serine for F-A while it was serine and alanine for F-B, and also in their peptide mapping patterns of digests with trypsin, Achromobacter protease I, and cyanogen bromide. The results suggest that glucose isomerase from S. phaeochromogenes was composed of the two kinds of isozymes and that each of isozymes was a tetramer constituted of non-identical subunits.  相似文献   

8.
The C alpha backbones of the glucose isomerase molecules of Streptomyces rubiginosus and Arthrobacter have been determined by X-ray crystallography and compared. Each molecule is a tetramer of eight-stranded alpha/beta barrels, and the mode of association of the tetramers is identical in each case. The Arthrobacter electron density shows four additional amino acids at the carboxyl terminus. There is also an insertion of six amino acids at position 277, and two individual insertions at about positions 348 and 357 (numbering according to the Streptomyces structure). There is a close structural homology throughout the whole molecule, which is most accurate up to position 325. The r.m.s. displacement for 315 homologous C alpha positions up to this position is 0.92 A.  相似文献   

9.
Summary Growth and glucose isomerase biosynthesis in Streptomyces bambergiensis ATCC 13879 have been studied under different conditions. Some data concerning correlation between cultivation conditions and elemental analysis of the cells are also presented.  相似文献   

10.
Summary A study has been made of the mineral requirements of Streptomyces kanamyceticus KCC S-0433 for production of glucose isomerase. The optimal concentrations of MgSO4 and K2HPO4 for enzyme production are 0.07% and 0.05%, respectively. The elements Fe, Mn and Zn are required at levels of 10, 3 and 3 mg/l, respectively. Cu, Co and Ca have inhibitory effects on the production of the enzyme.  相似文献   

11.
12.
A kinetic method which allows one to evaluate whether an enzyme acting on two different substrates has one or two active sites was employed to study the active site of glucose isomerase which catalyses the isomerization of both glucose and xylose. The experimental data on the rates of hydrolysis of mixtures of various concentrations of glucose and xylose by the glucose isomerase from Streptomyces coincides well with the theoretical values calculated for the case of a single active site.  相似文献   

13.
A thermophilic strain of Streptomyces thermonitrificans produced a high activity of intracellular glucose isomerase (12 U/ml) when grown in a medium containing 1% (w/v) xylose, supplemented with 2% (w/v) sorbitol as the second carbon source, at 50°C for 16 h. Addition of Mg2+ enhanced enzyme production but the organism could grow and produce the enzyme in the absence of Co2+.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, IndiaNCL Communication No. 5813  相似文献   

14.
Summary A sclerotia-forming actinomycete of the genus Chainia secreted high levels of glucose (xylose) isomerase when grown in submerged culture on a wheat bran - yeast extract medium. Maximum activity (4 units/ml) was obtained after 3–4 days when the cell bound activity was 0.19 units/ml. The two enzymes differed significantly in pH optima (extracellular, 9.5; cell-bound, 7.0) and in their adsorption behaviour on CM and DEAE celluloses. Both Mg++ and Co++ are required by the cell-bound enzyme for its optimum activity while either Mg++ or Co++ is necessary for the extracellular enzyme.NCL Communication 3320  相似文献   

15.
Glucose isomerase (GI), an enzyme with deserved high potential in the world market. GI plays a major role in high Fructose Corn Syrup Production (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of various industrially valuable enzymes, including Glucose isomerase. Currently, recombinant strains have been available for the production of various enzymes, but it has limitation in the large scale production. Therefore, identifying effective streptomyces strains have emerged. The current study, the novel S. lividans RSU26 was isolated from a marine source and optimized its potential to produce glucose isomerase at different physical and chemical conditions. The optimum pH and temperature for GI and biomass production were 7.5 and 35 °C, respectively at 96 h. Characterization study revealed that the approximate molar mass of GI was 43 kDa for monomeric and 170 kDa for tetrameric forms. Kinetic behavior exhibits Km, and Vmax values for the conversion of fructose to glucose conversion were 48.8 mM and 2.54 U mg−1 at 50 °C and glucose to fructose were 29.4 mM and 2.38 U mg−1 at 65 °C protein, respectively. Therefore, the present study suggested that the wild–type S. lividans RSU26 has strong potential to produce glucose isomerase for various industrial applications.  相似文献   

16.
17.
Production of glucose isomerase from Streptomyces olivochromogenes PTCC 1457 was followed by its purification and immobilization. Different immobilization methods including the use of a hydrophobic support were investigated.  相似文献   

18.
Nine strains of actinomycetes isolated from Iraqi soils were investigated for glucose isomerase production. Only one strain, Streptomyces sp., C7, was active. The maximum conversion ratio of the enzyme for the cells grown in d-xylose medium after 24 h incubation at 70°C and pH 6.9, was 64 and 48% for crude extract and cell-bound enzyme, respectively. The optimum pH value and temperatures for both enzymes were 8.0 and 70°C.  相似文献   

19.
Results are presented which show that the D-xylose isomerases present in Streptomyces olivaceus and Streptomyces phaeochromogenes NRRL B-3559 are incapable of utilizing D-lyxose as a substrate. The implications of these findings as related to the use of D-lyxose in the selection of constitutive mutants are discussed.  相似文献   

20.
Summary Fermentations of Streptomyces flavogriseus were carried out at 30° C on media containing either Avicel, hay or acid hay hydrolysate as the principal carbon source. Under these conditions the strains produced simultaneously the enzymes of the cellulase complex as well as glucose isomerase. The enzyme activities were induced by hay, hay extract and D-xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号