首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper chaperones, soluble copper-binding proteins, are essential for ensuring proper distribution of copper to cellular compartments and to proteins requiring copper prosthetic groups. They are found in all eukaryotic organisms. Orthologues of the three copper chaperones characterized in yeast, ATX1, CCS and COX17, are present in Arabidopsis thaliana. Plants are faced with unique challenges to maintain metal homoeostasis, and thus their copper chaperones have evolved by diversifying and gaining additional functions. In this paper we present our current knowledge of copper chaperones in A. thaliana based on the information available from the complete sequence of its genome.  相似文献   

2.
Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studies have reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate copper trafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesis has to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations of copper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study of these chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role in cellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenic and metabolic signalling and their function.  相似文献   

3.
This review summarizes findings on a new family of small cytoplasmic proteins called copper chaperones. The copper chaperones bind and deliver copper ions to intracellular compartments and insert the copper into the active sites of specific partners, copper-dependent enzymes. Three types of copper chaperones have been found in eukaryotes. Their three-dimensional structures have been determined, intracellular target proteins identified, and mechanisms of action have been revealed. The Atx1 copper chaperone binds Cu(I) and interacts directly with the copper-binding domains of a P-type ATPase copper transporter, its physiological partner. The copper chaperone CCS delivers Cu(I) to Cu,Zn-superoxide dismutase 1. Cox17 and Cox11 proteins serve as copper chaperones for cytochrome c oxidase, a copper-dependent enzyme.  相似文献   

4.
Copper chaperones: function, structure and copper-binding properties   总被引:5,自引:0,他引:5  
 Copper is an absolute requirement for living systems and the intracellular trafficking of this metal to copper-dependent proteins is fundamental to normal cellular metabolism. The copper chaperones perform the dual functions of trafficking and the prevention of cytoplasmic exposure to copper ions in transit. Only a small number of copper chaperones have been identified at this time but their conservation across plant, bacterial and animal species suggests that the majority of living systems utilise these proteins for copper routing. The available data suggest that each copper-dependent protein in the cell is served by a specific copper chaperone. Although copper chaperones cannot be substituted for one another in a given cell type, copper chaperones that deliver to the same protein in different cell types appear to be functionally equivalent. The majority of the copper chaperones identified thus far have an "open-faced β-sandwich" global fold with a conserved MXCXXC metal-binding motif. Specificity for a given copper-dependent protein appears to be mediated by the residues surrounding the copper-binding motif. Copper binds to such proteins as Cu(I) in a trigonal complex with three sulfur ligands. Only the copper chaperone specific for cytochrome-c-oxidase, Cox17, deviates from this design. Received: 12 October 1998 / Accepted: 7 December 1998  相似文献   

5.
Copper chaperones are small cytoplasmic proteins that bind intracellular copper (Cu) and deliver it to Cu-dependent enzymes such as cytochrome oxidase, superoxide dismutase, and amine oxidase. Copper chaperones are similar in sequence and structure to the Cu-binding heavy metal-associated (HMA) domains of Cu-transporting ATPases (Cu-ATPases), and the genes for copper chaperones and Cu-ATPases are often located in the same operon. Phylogenetic analysis shows that Cu chaperones and HMA domains of Cu-ATPases represent ancient and distinct lineages that have evolved largely independently since their initial separation. Copper chaperone–Cu-ATPase operons appear to have evolved independently in different prokaryotic lineages, probably due to a strong selective pressure for coexpression of these genes. Received: 14 December 2000 / Accepted: 9 May 2001  相似文献   

6.
Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

7.
Intracellular copper routing: the role of copper chaperones   总被引:9,自引:0,他引:9  
Copper is required by all living systems. Cells have a variety of mechanisms to deal with this essential, yet toxic trace element. A recently discovered facet of homeostatic mechanisms is the protein-mediated, intracellular delivery of copper to target proteins. This routing is accomplished by a novel class of proteins, the 'copper chaperones'. They are a family of conserved proteins present in prokaryotes and eukaryotes, which suggests that copper chaperones are used throughout nature for intracellular copper routing.  相似文献   

8.
Copper serves as the essential cofactor for a number of enzymes involved in redox chemistry and virtually all organisms must accumulate trace levels of copper in order to survive. However, this metal can also be toxic and a number of effective methods for sequestering and detoxifying copper prevent the metal from freely circulating inside a cell. Copper metalloenzymes are therefore faced with the challenge of acquiring their precious metal cofactor in the absence of available copper. To overcome this dilemma, all eukaryotic organisms have evolved with a family of intracellular copper binding proteins that help reserve a bioavailable pool of copper for the metalloenzymes, escort the metal to appropriate targets, and directly transfer the copper ion. These proteins have been collectively called copper chaperones. The identification of such molecules has been made possible through molecular genetic studies in the bakers' yeast Saccharomyces cerevisiae. In this review, we highlight the findings that led to a new paradigm of intracellular trafficking of copper involving the action of copper chaperones. In particular, emphasis will be placed on the ATX1 and CCS copper chaperones that act to deliver copper to the secretory pathway and to Cu/Zn superoxide dismutase in the cytosol, respectively.  相似文献   

9.
Copper exists in two oxidation states, cuprous (Cu1+) and cupric (Cu2+), which, respectively, can donate or accept electrons. The fact that copper has two readily interconvertible redox states makes it a catalytic co-factor for many important enzymes. Over the past years, work in a number of laboratories has clearly demonstrated that studies in yeast have served as a springboard for identifying cellular components and processes involved in copper uptake and distribution. In several cases, it has been shown that mammalian proteins are capable of functionally replacing yeast proteins, thereby revealing their remarkable functional conservation. For high-affinity copper transport into cells, it has been shown that copper transporters of the Ctr family are required. Upon entering the cell, copper is partitioned to different proteins and into different compartments within the cell. Given the potential toxicity of copper, specialized proteins bind copper after it enters the cell and subsequently donate the bound copper to their corresponding recipient proteins. Three copper-binding proteins, Ccs1, Cox17, and Atx1, have been identified that serve as "copper chaperones" to deliver copper. double dagger.  相似文献   

10.
Copper chaperones are copper-binding proteins that directly insert copper into specific targets, preventing the accumulation of free copper ions that can be toxic to the cell. Despite considerable advances in the understanding of copper transfer from copper chaperones to their target, to date, there is no information regarding how the activity of these proteins is regulated in higher eukaryotes. The insertion of copper into the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) depends on the copper chaperone for SOD1 (CCS). We have recently reported that CCS protein is increased in tissues of rats fed copper-deficient diets suggesting that copper may regulate CCS expression. Here we show that whereas copper deficiency increased CCS protein in rats, mRNA level was unaffected. Rodent and human cell lines cultured in the presence of the specific copper chelator 2,3,2-tetraamine displayed a dose-dependent increase in CCS protein that could be reversed with the addition of copper but not iron or zinc to the cells. Switching cells from copper-deficient to copper-rich medium promoted the rapid degradation of CCS, which could be blocked by the proteosome inhibitors MG132 and lactacystin but not a cysteine protease inhibitor or inhibitors of the lysosomal degradation pathway. In addition, CCS degradation was slower in copper-deficient cells than in cells cultured in copper-rich medium. Together, these data show that copper regulates CCS expression by modulating its degradation by the 26 S proteosome and suggest a novel role for CCS in prioritizing the utilization of copper when it is scarce.  相似文献   

11.
铜是生物体不可缺少的一种元素,在细胞内把铜转运到含铜的蛋白质是细胞正常代谢的基本要求,转铜伴铝在体内执行重要的生理功能,它们不但保护细胞免受游离铜离子的有害作用。而且也确保铜被运输到其特异的靶蛋白。作者综述了转铜伴铝的功能、结构特性,以及可能的金属转移机制。  相似文献   

12.
Copper is an essential micronutrient that plays a vital role as a catalytic co-factor for a variety of metalloenzymes. The redox chemistry of copper also makes it a potentially toxic metal if not properly used. Therefore, elaborate mechanisms have evolved for controlling its cellular uptake, elimination, and distribution. In the last decade, our understanding of the systems involved in maintaining copper homeostasis has improved considerably with the characterization of copper transporters that mediate cellular copper uptake or efflux and with the identification of copper chaperones, a family of proteins required for delivering copper to specific targets in the cell. Despite the distinct roles of these proteins in copper trafficking, all seem able to respond to changes in copper status. Here, we describe recent advances in our knowledge of how copper-trafficking proteins respond to copper deficiency or overload in mammalian cells in order to maintain copper balance.  相似文献   

13.
Is there a role for copper in neurodegenerative diseases?   总被引:2,自引:0,他引:2  
Copper is an essential metal in living organisms; thus, the maintenance of adequate copper levels is of vital importance and is highly regulated. Dysfunction of copper metabolism leading to its excess or deficiency results in severe ailments. Two examples of illnesses related to alterations in copper metabolism are Menkes and Wilson diseases. Several proteins are involved in the maintenance of copper homeostasis, including copper transporters and metal chaperones. In the last several years, the beta-amyloid-precursor protein (beta-APP) and the prion protein (PrP(C)), which are related to the neurodegenerative disorders Alzheimer and prion diseases respectively, have been associated with copper metabolism. Both proteins bind copper through copper-binding domains that also have been shown to reduce copper in vitro. Moreover, this ability to reduce copper is associated with a neuroprotective effect exerted by the copper-binding domain of both proteins against copper in vivo. In addition to a functional link between copper and beta-APP or PrP(C), evidence suggests that copper has a role in Alzheimer and prion diseases. Here, we review the evidence that supports both, the role of beta-APP and PrP(C), in copper metabolism and the putative role of copper in neurodegenerative diseases.  相似文献   

14.
Copper chaperones are necessary for intracellular trafficking of copper to target proteins. This is probably because the milieu inside the cell has a large capacity for sequestering this metal. By fluorometry using a fluorescent Cu(II) chelator and by centrifugal ultrafiltration, we have studied copper binding of the whole cytosolic proteins from mouse brain and liver, and found that their binding capacity and affinity for copper were markedly increased by ascorbate. Brain cytosolic protein bound, with high affinity, 63 nmol of copper/mg, more than half of which was redox-inactive, as indicated by its inability to catalyze oxidation of ascorbate. Most of the bound copper was in the Cu(I) state, coordinating to thiol groups of protein. Cytosolic protein competed for copper more strongly than GSH when compared at their relative concentrations in tissues. The results taken together suggest that protein thiols of cytosol can strongly sequester copper.  相似文献   

15.
Molecular mechanisms of copper homeostasis.   总被引:10,自引:0,他引:10  
Copper is an essential trace element which plays a pivotal role in cell physiology as it constitutes a core part of important cuproenzymes. Novel components of copper homeostasis in humans have been identified recently which have been characterised at the molecular level. These include copper-transporting P-type ATPases, Menkes and Wilson proteins, and copper chaperones. These findings have paved the way towards better understanding of the role of copper deficiency or copper toxicity in physiological and pathological conditions.  相似文献   

16.
This paper is a continuation of our study of the connection between the changing environment and the changing use of particular elements in organisms in the course of their combined evolution (Decaria, Bertini and Williams, Metallomics, 2010, 2, 706). Here we treat the changes in copper proteins in historically the same increasingly oxidising environmental conditions. The study is a bioinformatic analysis of the types and the numbers of copper domains of proteins from 435 DNA sequences of a wide range of organisms available in NCBI, using the method developed by Andreini, Bertini and Rosato in Accounts of Chemical Research 2009, 42, 1471. The copper domains of greatest interest are found predominantly in copper chaperones, homeostatic proteins and redox enzymes mainly used outside the cytoplasm which are in themselves somewhat diverse. The multiplicity of these proteins is strongly marked. The contrasting use of the iron and heme iron proteins in oxidations, mostly in the cytoplasm, is compared with them and with activity of zinc fingers during evolution. It is shown that evolution is a coordinated development of the chemistry of elements with use of novel and multiple copies of their proteins as their availability rises in the environment.  相似文献   

17.
Copper, like iron, is an essential transition metal ion in which its redox reactivity, whilst essential for the activity of mitochondrial enzymes, can also be a source of harmful reactive oxygen species if not chelated to biomolecules. Therefore, both metals are sequestered by protein chaperones and moved across membranes by protein transporters with the excess held in storage proteins for future use. In the case of copper, the storage proteins in the mitochondria are a distinct ceruloplasmin and metallothionein (MT). If the cell accumulates too much copper or copper is needed by other cells, then copper can be chaperoned to the trans-Golgi secretory compartment where it is transported into the Golgi by ATP-dependent pumps ATP7A/B. In liver, the copper is then incorporated into ceruloplasmin in vesicles that travel to the plasma membrane and release ceruloplasmin into the plasma. This paper reviews the genetic basis for diseases associated with copper deficit or excess, particularly those attributed to defective ATP7A/B transporters, with special emphasis on pathologies related to a loss of mitochondrial function.  相似文献   

18.
BackgroundA copper chaperone CCS is a multi-domain protein that supplies a copper ion to Cu/Zn-superoxide dismutase (SOD1). Among the domains of CCS, the N-terminal domain (CCSdI) belongs to a heavy metal-associated (HMA) domain, in which a Cys-x-x-Cys (CxxC) motif binds a heavy metal ion. It has hence been expected that the HMA domain in CCS has a role in the metal trafficking; however, the CxxC motif in the domain is dispensable for supplying a copper ion to SOD1, leaving an open question on roles of CCSdI in CCS.MethodsTo evaluate protein-protein interactions of CCS through CCSdI, yeast two-hybrid assay, a pull-down assay using recombinant proteins, and the analysis with fluorescence resonance energy transfer were performed.ResultsWe found that CCS specifically interacted with another copper chaperone HAH1, a HMA domain protein, through CCSdI. The interaction between CCSdI and HAH1 was not involved in the copper supply from CCS to SOD1 but was mediated by a zinc ion ligated with Cys residues of the CxxC motifs in CCSdI and HAH1.ConclusionWhile physiological significance of the interaction between copper chaperones awaits further investigation, we propose that CCSdI would have a role in the metal-mediated interaction with other proteins including heterologous copper chaperones.  相似文献   

19.
Biological processes in living cells are compartmentalized between lipid membranes. Integral membrane proteins often confer specific functions to these compartments and as such have a critical role in cellular metabolism and function. Cytochrome c oxidase is a macromolecular metalloprotein complex essential for the respiratory function of the cell. Elucidating the mechanisms of assembly of cytochrome c oxidase within the inner mitochondrial membrane represents a unique challenge for understanding metalloprotein biosynthesis. Elegant genetic experiments in yeast have defined several proteins required for copper delivery to cytochrome c oxidase. While the precise role of each of these proteins in copper incorporation remains unclear, recent studies have revealed that inherited mutations in two of these proteins can result in severe pathology in human infants in association with cytochrome c oxidase deficiency. Characterization of the molecular pathogenesis of these disorders offers new insights into the mechanisms of cellular copper metabolism and the role of these cytochrome c oxidase copper chaperones in human disease.  相似文献   

20.
Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using 1H and 15N heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)2Cys pair, is located on an exposed loop. 1H-15N HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号