首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian fertilization depends upon successful binding and fusion between the membranes of the spermatozoon and the oocyte. These processes are thought to be mediated by a series of protein-protein interactions in which sperm antigens known as fertilins are thought to play a key role. Using a recently developed fluorescence technique, the interactions of the oligopeptide sequence corresponding to the fusogenic domain of mouse fertilin-alpha (MFalphaP) and phospholipid vesicles have been investigated. Following stopped-flow mixing, MFalphaP bound rapidly to phospholipid membranes in a co-operative manner with a Hill coefficient of 2.4 and binding rate constants in excess of 1000 s-1. The co-operative nature of the binding process is suggested to represent evidence of a structural mechanism to prevent egg fertilization by immature spermatozoa. The subsequent membrane insertion was found to take place over a longer time period (with rate constants of up to 6.3 s-1), and was linear with respect to peptide concentration. Comparison of these processes with similar time-resolved circular dichroism measurements revealed that changes in peptide secondary structure were very rapid. Fourier transform infrared spectroscopy measurements confirmed changes in the secondary structure of MFalphaP during interaction with PC phospholipid membranes, indicating that the peptide is mainly present in a beta-structure with a small proportion of alpha-helix. These results are consistent with the hypothesis that fertilin-alpha is the fusogenic species with an important role in fertilization.  相似文献   

2.
The interaction of the fusogenic polypeptide segment "B18" from the fertilization protein binding with lipid membranes was investigated by solid state 2H and 31P NMR, and by differential scanning calorimetry. B18 is known to adopt different conformations depending on peptide concentration, ionic conditions, pH and lipid environment. Here, the peptide was studied in its beta-stranded amyloid conformation. According to 31P NMR, the lamellar morphology of the DMPC bilayer remains intact in the presence of B18. In going from low (1:90) to high (1:10) peptide/lipid ratios, an increasing effect on several different 2H-labeled lipid segments was observed, reflecting changes in phase behavior and local dynamics. The strongest influence of B18 was detected at the acyl-chains, while no significant effect on the lipid headgroup conformation was observed. This suggests an insertion of B18 in its fibrillar state into the membrane driven by hydrophobic interactions, rather than a peripheral binding mediated by electrostatics.  相似文献   

3.
C8, a short peptide characterized by three regularly spaced Trp residues, belongs to the membrane-proximal external functional domains of the feline immunodeficiency virus coat protein gp36. It elicits antiviral activity as a result of blocking cell entry and exhibits membranotropic and fusogenic activities.Membrane-proximal external functional domains of virus coat proteins are potential targets in the development of new anti-HIV drugs that overcome the limitations of the current anti-retroviral therapy.In the present work, we studied the conformation of C8 and its interaction with micellar surfaces using circular dichroism, nuclear magnetic resonance and fluorescence spectroscopy. The experimental data were integrated by molecular dynamics simulations in a micelle–water system.Our data provide insight into the environmental conditions related to the presence of the fusogenic peptide C8 on zwitterionic or negatively charged membranes. The membrane charge modulates the conformational features of C8. A zwitterionic membrane surface induces C8 to assume canonical secondary structures, with hydrophobic interactions between the Trp residues and the phospholipid chains of the micelles. A negatively charged membrane surface favors disordered C8 conformations and unspecific superficial interactions, resulting in membrane destabilization.  相似文献   

4.
The temporal sequence of molecular events involved in the interactions of a number of related peptides with membranes are revealed using two complementary fluorescence techniques. Comparative studies are reported of the interactions of melittin, promelittin and a melittin analogue with trp-19 replaced with Ile and the n-terminal gly replaced with a trp residue, with phosphatidylcholine membranes. It is shown that the interaction of the n-terminal region of melittin rapidly binds and inserts into the body of the membrane with a rate constant of around 367 s-1. This is followed by a slightly slower membrane insertion of the trp-19 region with a rate constant of around 112 s-1. The positive charges of the melittin molecule then come into close proximity with the membrane with rate constants around 27 s-1. Finally, these charged regions insert into the hydrophobic core of the membrane with rate constants of about 0.3 s-1. The effect of incorporating net negative charge onto the membrane surface in the form of 15 mole % phosphatidylserine, augments by about threefold, the binding of the charged domains of the melittin molecule. The observations of the melittin interactions are compared with the melittin-precursor protein, promelittin. Sections of the promelittin molecule are also found to bind and insert into the body of the phospholipid membrane, although nearly 30 times less rapidly than melittin. No charged sections of promelittin are found to insert into the membrane.  相似文献   

5.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

6.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

7.
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.  相似文献   

8.
Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process.  相似文献   

9.
The interactions of three serum albumin species (rat, human, and bovine) with liposomes containing dimyristoylphosphatidylcholine, distearoylphosphatidylcholine or mixtures of both under different membrane fluidity conditions have been investigated using isothermal titration calorimetry and steady-state fluorescence anisotropy. Calorimetric titration studies of the binding of liposomes to the albumin species indicate in all cases exothermic processes with multiple sites of binding in the albumin molecules. Distinct saturation of the protein-lipid binding processes was observed at low or high molar lipid/protein ratio depending on the particular system. The thermodynamic parameters, including the association enthalpy and entropy, and the optimal values for the binding constants were thoroughly varied as a function of the number of identical binding sites, defining the best value of the parameter. Our experimental results, obtained using complementary biophysical techniques, provide experimental evidence for a significant difference in the association of the three protein species to phospholipid membranes. These observations also suggest a close relation between the binding parameters of the protein/lipid association and the lipid state of the phospholipid membranes.  相似文献   

10.
Calcitonin, a peptide hormone associated with medullary carcinoma of the thyroid, has the potential to form amyloid fibrils and may be a valuable model for investigating the role of peptide-membrane interactions in beta-sheet and amyloid formation. Via a new model peptide system, bovine calcitonin, we found that the exposure of peptide to phospholipid membranes altered its structure relative to the structures formed in aqueous solutions. Of particular relevance to the amyloidoses, incubation of calcitonin with cholesterol-rich and ganglioside-containing membranes resulted in significant enrichment in the beta-sheet and amyloid content of the peptide. The formation of amyloid was also accelerated in these systems. A correlation between the phospholipid-induced structural alterations and calcitonin binding affinities to phospholipid membranes was evident. Bovine calcitonin has considerably higher binding affinity for the phospholipid systems that enhanced its beta-sheet and amyloid structure. Electrostatic forces were not the governing forces behind the observed behavior, as supported by the fact that the ionic strength did not affect the peptide structures or binding affinities. A Van't Hoff analysis of the temperature-dependent peptide binding affinities indicated that binding led to an increase in enthalpy and possibly an increase in entropy of the peptide-membrane systems. Experiments with other amyloid-forming peptides such as beta-amyloid of Alzheimer's disease have also shown similar results and may indicate the need to manipulate peptide-membrane interactions in order to control amyloid formation and its associated disease.  相似文献   

11.
The structure of "B18", an 18-residue fusogenic peptide from the sea urchin fertilization protein bindin, was investigated in several membrane-mimicking environments with circular dichroism and nuclear magnetic resonance spectroscopy. The fully conserved peptide sequence represents the minimal functional part of the 24 kDa protein, which can bind to membranes and induce fusion of lipid vesicles. The B18 peptide undergoes a coil-helix transition in the presence of TFE, showing a transient tendency to self-associate. Its NMR structure in 30% TFE exhibits two helical regions at either side, connected by a flexible loop. In DPC and SDS detergent micelles, this loop becomes distinctly bent, presumably due to the high degree of curvature of the micelles. The loop contains a histidine-rich motif for binding zinc, which is required for the fusogenic function of the peptide. Therefore, we monitored the structural response of B18 and of recombinant bindin toward this ion. Like TFE, and in a mutually cooperative manner, zinc induces a partially helical structure in both the peptide and the protein. Complex formation via the histidine residues rigidifies the flexible loop and is accompanied by self-association of the molecules. The data suggest that the zinc-bound functional state is a continuous amphipathic alpha-helix, bearing some resemblance to a leucine zipper. Two hydrophobic patches on one face could favorably penetrate into a membrane, while two arginines on the other face could interact with lipid phosphate groups. The three-dimensional model of the B18 sequence thus contributes to a better understanding of peptide-induced vesicle fusion in general, and of the lipid-protein interactions of sperm bindin in particular.  相似文献   

12.
Lipid membranes play a key role in the viral life cycle. Enveloped viruses particularly require a sequence of fusion and fission events between the viral envelope and the target membranes for entry into the cell and egress from it. These processes are controlled by one or more viral glycoproteins that undergo conformational changes favoring the necessary micro- and mesoscopic lipid re-arrangements. Multiple regions from these glycoproteins are thought to interact with the membranes, according to a concerted mechanism, in order to generate the distortion necessary for fusion. In this work, we perform an EPR study on the role played by the membrane composition in tuning the interaction between lipid bilayers and two peptides, gH626-644 and gB632-650, that are highly fusogenic fragments of the gH and gB glycoproteins of herpes simplex virus. Our results show that both peptides interact with lipid bilayers, perturbing the local lipid packing. gH626-644 localizes close to the hydrophilic bilayer surface, while gB632-650 penetrates deeply into the membrane. Chain perturbation by the peptides increases in the presence of charged phospholipids. Finally, cholesterol does not alter the ability of gB632-650 to penetrate deeply in the membrane, whereas it limits penetration of the gH626-644 peptide to the more external layer. The different modes of interaction result in a higher fusogenic ability of gB632-650 towards cholesterol-enriched membranes, as demonstrated by lipid mixing assays. These results suggest that the mechanism of action of the gH and gB glycoproteins is modulated by the properties and composition of the phospholipid bilayer.  相似文献   

13.
Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.  相似文献   

14.
Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.  相似文献   

15.
Membrane fusion between uncharged lipid vesicles can be triggered by the peptide sequence 'B18' from the fertilization protein 'bindin', but it only proceeds efficiently in the presence of Zn(2+) ions. We studied (i) the interaction of Zn(2+) with the fusogenic peptide B18, (ii) the binding of B18 to 1-palmitoyl-2-oleoylglycero-3-phosphocholine (POPC), and (iii) the ternary system POPC/B18/Zn(2+). The complex formation of Zn(2+) with the central histidine-rich motif of B18 appears to shift the secondary structure away from a beta-sheet towards an alpha-helical conformation. Here we observe for the first time an essentially alpha-helical structure of the peptide when immersed in POPC bilayers which appears to represent its functional fusogenic state. Infrared linear dichroism suggests a peripheral, oblique insertion mode of B18, mediated by the hydrophobic patches along one side of the amphipathic peptide. Furthermore, the hydration level of the peptide is reduced, suggesting that the hydrophobic region of the bilayer is involved in the lipid/peptide interactions. The hydration capacity of the POPC/B18/Zn(2+) system is distinctly smaller than that of POPC/Zn(2+) without peptide. The accompanying decrease in the number of tightly bound water molecules per lipid can be interpreted as a reduction in the repulsive 'hydration' forces, which usually prevent the spontaneous fusion of lipid vesicles. Binding of the B18 peptide in the presence of Zn(2+) effectively renders the membrane surface more hydrophobic, thus allowing fusion to proceed.  相似文献   

16.
Amyloid peptide (Aβ) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Aβ aggregates and neuronal membranes play an important role in toxicity has gained some acceptance. Previously, we showed that the C-terminal domain (e.g. amino acids 29-42) of Aβ induces membrane permeabilisation and fusion, an effect which is related to the appearance of non-bilayer structures. Conformational studies showed that this peptide has properties similar to those of the fusion peptide of viral proteins i.e. a tilted penetration into membranes. Since piracetam interacts with lipids and has beneficial effects on several symptoms of Alzheimer's disease, we investigated in model membranes the ability of piracetam to hinder the destabilising effect of the Aβ 29-42 peptide. Using fluorescence studies and 31P and 2H NMR spectroscopy, we have shown that piracetam was able to significantly decrease the fusogenic and destabilising effect of Aβ 29-42, in a concentration-dependent manner. While the peptide induced lipid disorganisation and subsequent negative curvature at the membrane-water interface, the conformational analysis showed that piracetam, when preincubated with lipids, coats the phospholipid headgroups. Calculations suggest that this prevents appearance of the peptide-induced curvature. In addition, insertion of molecules with an inverted cone shape, like piracetam, into the outer membrane leaflet should make the formation of such structures energetically less favourable and therefore decrease the likelihood of membrane fusion.  相似文献   

17.
Cytochrome c3 (cyt c3) can mediate electron transport across phosphatidylcholine (PC)/cardiolipin (CL) and PC/phosphatidylglycerol (PG) membranes. A two-molecule process is involved in the electron transport across PC/CL membranes in the liquid-crystalline state. In contrast, a single-molecule process dominates the electron transport across PC/CL membranes in the gel state and PC/PG membranes in the liquid-crystalline and gel states. Namely, the electron transport mechanism differs with the phospholipid composition and membrane fluidity. The rate-limiting step of the two-molecule process was lateral diffusion of cyt c3 in membranes. The rate constants for the three single-molecule process cases were similar to each other. To elucidate these reaction processes, interactions between cyt c3 and phosphate groups and between cyt c3 and the glycerol backbones of phospholipid bilayers were investigated by means of 31P and 2H solid-state NMR, respectively, for CL and PC/CL membranes. The results showed that the polar headgroups of both phosphatidylcholine and CL are involved in the binding of cyt c3. Also, cyt c3 penetrates into membranes, which would induce distortion of the lipid bilayer. The molecular mechanisms underlying the single- and two-molecule processes are discussed in terms of membrane structure.  相似文献   

18.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

19.
The interaction of B18 peptide with surfactants has been studied by circular dichroism spectroscopy and fluorescence measurements. B18 is the fusogenic motif of the fertilization sea urchin protein. The peptide forms an alpha-helix structure when interacting with positively or negatively charged surfactants below and above the critical micellar concentration (CMC). The alpha-helix formation is due to binding of surfactant monomers rather than the formation of surfactant micelles on the peptide. Fluorescence measurements show that the CMC of the negatively charged surfactant increases in the presence of B18, supporting the fact that there is a strong interaction between the peptide and monomers. Nonionic surfactant monomers have no effect on the peptide structure, whereas the micelles induce an alpha-helical conformation. In this case the helix stabilization results from the formation of surfactant micelles on the peptide.  相似文献   

20.
The backbone dynamics of the C-terminal SH2 domain from the regulatory subunit p85alpha (p85alpha C-SH2) of phosphoinositide 3-kinase has been investigated in the absence of, and in complex with, a high-affinity phosphotyrosine-containing peptide ligand derived from the platelet-derived growth-factor receptor. (15)N R(1) and R(2) relaxation rates and steady-state [(1)H]-(15)N NOE values were measured by means of (1)H-(15)N correlated two-dimensional methods and were analyzed within the framework of the model-free formalism. Several residues in the BC loop and in the neighbouring secondary structural elements display fast local dynamics in the absence of phosphotyrosine peptide ligand as evidenced by below-average [(1)H]-(15)N NOE values. Furthermore, residue Gln41 (BC3) displays conformational exchange phenomena as indicated by an above-average R(2) relaxation rate. Upon binding of the phosphotyrosine peptide, the NOE values increase to values observed for regular secondary structure and the exchange contribution to the R(2) relaxation rate for Gln41 (BC3) vanishes. These observations indicate a loss of backbone flexibility upon ligand binding. Substantial exchange contributions for His56 (betaD4) and Cys57 (betaD5), which are known to make important interactions with the ligand, are attenuated upon ligand binding. Several residues in the betaD'-FB region and the BG loop, which contribute to the ligand binding surface of the protein, exhibit exchange terms which are reduced or vanish when the ligand is bound. Together, these observations suggest that ligand binding is accompanied by a loss of conformational flexibility on the ligand binding face of the protein. However, comparison with other SH2 domains reveals an apparent lack of consensus in the changes in dynamics induced by ligand binding. Exchange rates for individual residues were quantified in peptide-complexed p85alpha C-SH2 from the dependence of the exchange contributions on the CPMG delay in an R(2) series and show that peptide-complexed p85alpha C-SH2 is affected by multiple conformational exchange processes with exchange rate constants from 10(2) s(-1) to 7.10(3) s(-1). Mapping of the exchange-rate constants on the protein surface show a clustering of residues with similar exchange-rate constants and suggests that clustered residues are affected by a common predominant exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号