首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
The effect of salts on the catalytic activity of the molybdenum-containing nitrogenase complex from Azotobacter vinelandii has been investigated. NaCl was found to inhibit the reduction of the substrates, protons, acetylene, and dinitrogen by a common mechanism. The pattern of inhibition is sigmoidal, indicating a highly cooperative interaction involving multiple inhibitor sites. Sixteen other salts that were investigated also exhibited this pattern of inhibition. NaCl functions as a dead-end inhibitor without altering the number of MgATP hydrolyzed/electron transferred to substrate. The level of expressed inhibition is sensitive to MgATP concentration, the molar ratio of the MoFe-protein (Av1) to the Fe-protein (Av2), and total protein concentration. In addition, NaCl is an inhibitor of the MgATP-dependent, iron chelation of Av2. Although the inhibition is exhibited over the same salt concentration range as that for inhibition of substrate reduction, the pattern of inhibition is hyperbolic. A model based upon simple equilibrium interactions among the enzyme species, nucleotides, and inhibitor has been developed which quantitatively accounts for the observed effects of salt. In this model, the formation of the active complex between Av1 and Av2 is abolished by salts. Likewise, the apparent affinity of Av2 for MgATP is reduced. An additional prediction based upon the model is that the affinity between Av2 and Av1 is independent of nucleotide binding.  相似文献   

2.
Serine substitutions for the five conserved cysteins (residues 38, 85, 97, 132, and 184) have been made in the Azotobacter vinelandii nitrogenase Fe-protein by site-specific mutagenesis. At least moderate levels of enzyme activity (greater than 10% of wild type enzyme) were found for enzymes with serine substitutions at residues 38, 85, and 184; whereas, no activity was detected for enzymes with serines at residues 97 and 132. This is consistent with cysteines 97 and 132 being the four ligands to the Fe:S cluster (two ligands from each of the two identical subunits). Although previous chemical modification studies had implicated these residues as ligands, the earlier results did not portend the new finding that of all the conserved cysteines only these 2 residues are required for a second function of the Fe-protein. Namely, if either cysteine 97 or 132 is replaced, it appears that a functional Fe:S cluster cannot be incorporated into the apo-Fe-protein. The consequence is that these altered Fe-proteins cannot participate either in substrate reduction or in the biosynthesis of FeMo-cofactor, a metallocofactor of the MoFe-protein. These results implicate the Fe:S center of Fe-protein in the biosynthesis mechanism as either a redox partner or Fe:S donor. Additional results suggest that the posttranslational modification of Fe-protein by nifM product is not the insertion of the Fe:S center.  相似文献   

3.
Lei S  Pulakat L  Suh M  Gavini N 《FEBS letters》2000,478(1-2):192-196
Azotobacter vinelandii UW97 is defective in nitrogen fixation due to a replacement of serine at position 44 by phenylalanine in the Fe-protein [Pulakat, L., Hausman, B.S., Lei, S. and Gavini, N. (1996) J. Biol. Chem. 271, 1884-1889]. Serine residue 44 is located in a conserved domain that links the nucleotide binding site and the MoFe-protein docking surface of the Fe-protein. Therefore, it is possible that the loss of function by A. vinelandii UW97-Fe-protein may be caused by global conformational disruption or disruption of the conformational change upon MgATP binding. To determine whether it is possible to generate a functional nitrogenase complex via a compensating second site mutation(s) in the Fe-protein, we have attempted to isolate genetic revertants of A. vinelandii UW97 that can grow on nitrogen-free medium. One such revertant, designated A vinelandii BG9, encoded a Fe-protein that retained the Ser44Phe mutation and also had a second mutation that caused the replacement of a lysine at position 170 by glutamic acid. Lysine 170 is highly conserved and is located in a conserved region of the Fe-protein. This region is implicated in stabilizing the MgATP-induced conformation of the Fe-protein and in docking to the MoFe-protein. Further complementation analysis showed that the Fe-protein mutant that retained serine 44 but contained the substitution of lysine at position 170 by glutamic acid was also non-functional. Thus, neither Ser44Phe nor Lys170Glu mutants of Fe-protein were functional; however, the Fe-protein in A. vinelandii BG9 that contained both substitutions could support diazotrophic growth on the strain.  相似文献   

4.
Cross-linking site in Azotobacter vinelandii complex   总被引:4,自引:0,他引:4  
The Fe-protein and the MoFe-protein of the Azotobacter vinelandii nitrogenase complex can be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (Willing, A., Georgiadis, M.M., Rees, D. C., and Howard, J. B. (1989) J. Biol. Chem. 264, 8499-8503). In this reaction, one of the identical subunits of the Fe-protein dimer is linked by an isopeptide bond to each beta-subunit of the MoFe-protein tetramer. The reaction has been found to be highly specific with greater than 85% of amino acid residues Glu-112 (Fe-protein) and Lys-399 (MoFe-protein) cross-linked to each other. Although Glu-112 is located in a highly conserved amino acid sequence, it is found in only half of the known Fe-protein sequences. Likewise, Lys-399 is not a conserved residue in the MoFe-protein. Glu-112 appears to be part of an anionic cluster of nine carboxylic acids which is located between the proposed thiol ligands for the Fe:S center. In contrast, the basic residue cluster which includes Lys-399 has been found in only in the Azotobacter MoFe-protein. Thus, this crosslinking reaction either is unique to Azotobacter nitrogenase or must involve other residues in the MoFe-protein of other species. Because Lys-399 and Glu-112 form a specific cross-link, it is probable that they are part of the interaction site leading to productive complex formation. This information should be useful for the model building of the complex from the crystallographic structures of the individual components.  相似文献   

5.
纯化的柱孢鱼腥藻铁蛋白能够与棕色固氮菌的钼铁蛋白有效地交叉反应,展现较高的活性。此异源交叉反应的乙炔还原比活及放氢比活,分别是蓝藻同源互补比活的83.8及66.7%。比较藻铁蛋白与菌钼铁蛋白异源交叉反应及藻固氮酶组分之间的同源反应的动力学特点时发现,铁蛋白对钼铁蛋白的最佳克分子比数前者(异源交叉反应)较后者(藻同源反应)为高,前者为5,后者为1;但反应的时间进程两者差别不大。  相似文献   

6.
To study the effect of altered carbon supply on nitrogenase (EC 1.7.99.2), plants of Alnus incana (L.) Moench in symbiosis with the local source of Frankia were exposed to darkness for 2 days, and then returned to normal light/dark conditions. During the dark period nitrogenase activity in vivo (intact plants) and in vitro ( Frankia cells supplied with ATP and reductant), measured as acetylene reduction activity, was almost completely lost. Western blots for both the Fe-protein (dinitrogenase reductase) and the MoFe-protein (dinitrogenase) showed that, in particular, the amount of MoFe-protein was strongly reduced during darkness. Protein stained sodium dodecyl sulphate-polyacrylamide gels of Frankia protein showed that the nitrogenase proteins were the only abundant proteins that clearly decreased during darkness. During recovery, studied for 4 days, nitrogenase activity in vivo recovered to the level before dark treatment but was still only half of control activity, Nitrogenase activity in vitro and the amount of MoFe-protein, both expressed per Frankia protein, recovered and reached similar values in previously dark treated plants and in control plants. The rate of recovery was similar to the increase in activity of control plants, suggesting growth of Frankia in addition to synthesis of nitrogenase proteins during the recovery after carbon starvation.  相似文献   

7.
Chelation of Fe from the Fe-protein component (Av2) of Azotobacter vinelandii nitrogenase has been investigated. The chelation, which requires MgATP binding by Av2, is best described as a two-exponential process. The rates for the two phases differed by approximately 10-fold and increased as the concentration of MgATP was increased. The rates for both phases were 50% of maximum at approximately 1.5 mM MgATP. At MgATP concentrations greater than 100 microM, the more rapid phase represented approximately 25% of the total Fe chelated from Av2. However, below 100 microM MgATP, the proportion of the faster phase decreased until at 20 microM MgATP, only a single phase could be detected. The properties of Av2 were studied at various stages of Fe chelation. The partially chelated protein was isolated from the reaction by gel filtration and was subjected to a second MgATP-dependent Fe chelation. Material isolated after the completion of the first phase regained biphasic kinetics in subsequent chelation reactions. However, if MgATP was present during the isolation of Av2, then only a single phase was observed in the subsequent chelation studies. In addition, the enzymatic activity of Av2 decreased concomitantly with total Fe chelation. To account for these observations, a model is presented in which Av2 exists in two conformers. Fe chelation is proposed to occur from either conformer but only when two MgATP are bound. Both conformers bind MgATP with the same affinity but are distinguished by a 10-fold difference in chelation rate. The two conformers are in equilibrium and can interconvert only in the absence of MgATP. That is, MgATP binding prevents the conversion of the two conformational states.  相似文献   

8.
Steady-state chemostat cultures of Azotobacter vinelandii were established in a simple defined medium that had been chemically purified to minimize Mo and that contained no utilizable combined N source. Growth was dependent on N2 fixation, the limiting nutrient being the Mo contaminating the system. The Mo content of the organisms was at least 100-fold lower than that of Mo-sufficient cultures, and they lacked the characteristic g = 3.7 e.p.r. feature of the MoFe-protein of nitrogenase. A characteristic of nitrogenase activity in vivo in Mo-limited populations was a disproportionately low activity for acetylene reduction, which was 0.3 to 0.1 of that expected from the rate of N2 reduction. Acetylene was also a poor substrate in comparison with protons as a substrate for nitrogenase, and did not markedly inhibit H2 evolution, in contrast with Mo-sufficient populations. In batch cultures in similar medium or 'spent' chemostat medium inoculated with Mo-limited organisms, the addition of Mo elicited a biphasic increased growth response at concentrations as low as 2.5 nM, provided that sufficient Fe was supplied. In this system V did not substitute for Mo, and Mo-deficient cultures ceased growth at a 25-fold lower population density compared with cultures supplemented with Mo. Nitrogenase component proteins could not be unequivocally detected by visual inspection of fractionated crude extracts of Mo-limited organisms. 35SO42-pulse-labelling studies also showed that the rate of synthesis of the MoFe-protein component of nitrogenase was too low to be quantified. However, the Fe-protein of nitrogenase was apparently synthesized at high rates. The discussion includes an evaluation of the possibility that A. vinelandii possesses an Mo-independent N2-fixation system.  相似文献   

9.
Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates diurnal rhythms for photosynthesis and N(2) fixation, with peaks of O(2) evolution and nitrogenase activity approximately 12 h out of phase. We cloned and sequenced the nifHDK operon, and determined that the amino acid sequences of all three proteins were highly conserved relative to those of other cyanobacteria and bacteria. However, the Fe-protein, encoded by the nifH gene, demonstrated two differences from the related protein in Azotobacter vinelandii, for which a 3-D structure has been determined. First, the Cyanothece Fe-protein contained a 37 amino acid extension at the N-terminus. This approximately 4 kDa addition to the protein appeared to fold as a separate domain, but remained a part of the active protein, as was verified by migration on acrylamide gels. In addition, the Cyanothece Fe-protein had amino acid differences at positions involved in formation of the Fe-protein dimer-dimer contacts in A. vinelandii nitrogenase. There were also changes in residues involved with interaction between the Fe-protein and the MoFe-protein when compared with A. vinelandii. Since the Cyanothece Fe-protein is quickly degraded after activity, it is suggested that the extension and the amino acid alterations were somehow involved in this degradative process.  相似文献   

10.
A mutant form of the nitrogenase iron protein with a deletion of residue Leu 127, located in the switch II region of the nucleotide binding site, forms a tight, inactive complex with the nitrogenase molybdenum iron (MoFe) protein in the absence of nucleotide. The structure of this complex generated with proteins from Azotobacter vinelandii (designated the L127Delta-Av2-Av1 complex) has been crystallographically determined in the absence of nucleotide at 2.2 A resolution and with bound MgATP (introduced by soaking) at 3.0 A resolution. As observed in the structure of the complex between the wild-type A. vinelandii nitrogenase proteins stabilized with ADP.AlF(4-), the most significant conformational changes in the L127Delta complex occur in the Fe-protein component. While the interactions at the interface between the MoFe-protein and Fe-proteins are conserved in the two complexes, significant differences are evident at the subunit-subunit interface of the dimeric Fe-proteins, with the L127Delta-Av2 structure having a more open conformation than the wild-type Av2 in the complex stabilized by ADP.AlF(4-). Addition of MgATP to the L127Delta-Av2-Av1 complex results in a further increase in the separation between Fe-protein subunits so that the structure more closely resembles that of the wild-type, nucleotide-free, uncomplexed Fe-protein, rather than the Fe-protein conformation in the ADP.AlF(4-) complex. The L127Delta mutation precludes key interactions between the Fe-protein and nucleotide, especially, but not exclusively, in the region corresponding to the switch II region of G-proteins, where the deletion constrains Gly 128 and Asp 129 from forming hydrogen bonds to the gamma-phosphate and activating water for attack on this group, respectively. These alterations account for the inability of this mutant to support mechanistically productive ATP hydrolysis. The ability of the L127Delta-Av2-Av1 complex to bind MgATP demonstrates that dissociation of the nitrogenase complex is not required for nucleotide binding.  相似文献   

11.
Effects of prolonged darkness on nitrogenase activity in vivo, nitrogenase activity in vitro, and the amounts of nitrogenase proteins were studied in symbiotic Frankia. Plants of Alnus incana (L.) Moench in symbiosis with a local source of Frankia were grown for 9 to 10 weeks in an 18/6 hour light/darkness cycle. After 12 hours of a light period, the plants were exposed to darkness for up to 40 hours. Nitrogenase activity (acetylene reduction activity) of intact plants was measured repeatedly. Frankia vesicle clusters were prepared from the nodules with an anaerobic homogenization and filtration technique and were used for measurements of in vitro nitrogenase activity and for measurements of the amounts of nitrogenase proteins on Western blots. Antisera made against dinitrogenase reductase (Fe-protein) of Rhodospirillum rubrum and against dinitrogenase (MoFe-protein) of Azotobacter vinelandii were used. Western blots were made transparent and nitrogenase proteins were quantified spectrophotometrically. Nitrogenase activity both in vivo and in vitro decreased after about 23 hours of darkness and continued to decrease to about 25% and 16% of initial activity, respectively, after 40 hours. The amount of Fe-protein and MoFe-protein in Frankia of the same plants decreased to 60% and 35%, respectively, after 40 hours of darkness. Loss of nitrogenase activity thus appeared to be largely explained by loss of MoFe-protein.  相似文献   

12.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing D-ring reduction of protochlorophyllide in chlorophyll and bacteriochlorophyll biosynthesis. DPOR consists of two components, L-protein and NB-protein, which are structurally related to nitrogenase Fe-protein and MoFe-protein, respectively. Neither Fe-protein nor MoFe-protein is expressed as an active form in Escherichia coli due to the requirement of many Nif proteins for the assembly of the metallocenter and the maturation specific for diazotrophs. Here we report the functional expression of DPOR components from Rhodobacter capsulatus in Escherichia coli. Two overexpression plasmids for L-protein and NB-protein were constructed. L-protein and NB-protein purified from E. coli showed spectroscopic properties similar to those purified from R. capsulatus. L-protein and NB-protein activities were evaluated using a crude extract of E. coli overexpressing NB-protein and L-protein, respectively. Specific activities of the purified L-protein and NB-protein were 219+/-38 and 52.8+/-5.5 nmolChlorophyllide min(-1) mg(-1), respectively, which were even higher than those of L-protein and NB-protein purified from R. capsulatus. These E. coli strains provide a promising system for structural and kinetic analyses of the nitrogenase-like enzymes.  相似文献   

13.
Arg-127 stabilizes the oxyanion of the tetrahedral intermediate formed during Zn2+ carboxypeptidase A-catalyzed hydrolysis. Mutant carboxypeptidases lacking Arg-127 exhibit substantially reduced rates of hydrolysis with the change manifest almost entirely in kcat (kcat/Km is decreased by 10(4) for R127A). Therefore, Arg-127 stabilizes the enzyme-transition state complex but not the ground state enzyme-substrate complex (Phillips, M.A., Fletterick, R., & Rutter, W.J., 1990, J. Biol. Chem. 265, 20692-20698). The addition of guandine, methylguanidine, or ethylguanidine to R127A increases the kcat for hydrolysis of Bz-gly(o)phe by 10(2) without changing the Km. Dissociation constants (Kd) for the guanidine derivatives range from 0.1 to 0.5 M. The binding affinity for the transition state analog Cbz-phe-alaP(o)ala is increased similarly by 10(2); in contrast, the binding affinity of the ground state inhibitor benzylsuccinic acid is not altered. Thus, guanidine derivatives mimic Arg-127 in stabilizing the rate-limiting transition state. Hydrolysis of Bz-gly-(o)phe by wild-type carboxypeptidase, R127K, or R127M is not substantially affected by guanidine derivatives. Additionally, primary amines do not change the activity of R127A. These observations imply that guanidine binds in the cavity vacated by Arg-127 specifically and in a productive conformation for catalysis.  相似文献   

14.
The components of the nitrogenase complex, MoFe-protein and FeMo-cofactor, possessing no ATPase or nitrogen-fixing activity, maintain the 18O-exchange at the level of 1 atom of 18O per molecule of Pi, which is inhibited by ATP. The Fe-protein complex does not catalyze the 18O-exchange. The nitrogenase components do not hydrolyze the substrates for phosphatase (p-nitrophenylphosphate, beta-glycerophosphate, glucose 1-phosphate and ribose 5-phosphate). The artificial albumin-containing MoFe- and Fe-proteins and the carboxyl group-containing proteins (albumin, hemoglobin, lysozyme) as well as sodium molibdate do not catalyze the 18O-exchange. It is assumed that the site of the ATPase center which is subjected to phosphorylation, is located on the MoFe-protein.  相似文献   

15.
Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii   总被引:8,自引:0,他引:8  
A procedure has been developed to examine some of the functional roles of the 14 cysteinyl residues in the nitrogenase Fe-protein (Av2) from Azotobacter vinelandii. The reduced form of Av2 was alkylated with iodo[2-14C]acetic acid under a variety of experimental conditions, e.g. reaction in the presence of nucleotides, alpha,alpha'-dipyridyl and nucleotides, or denaturants. The labeled cysteinyl residues were identified and quantified using an analytical DEAE-Sepharose ion exchange chromatography peptide mapping technique based upon the known amino acid sequence (Hausinger, R. P., and Howard, J. B. (1982) J. Biol. Chem. 257, 2483-2490). From the results of the labeling experiments, the following features of the Av2 structure have been proposed. 1) Av2 contains no disulfides, hyperreactive thiols, or surface thiols as defined by reaction with iodoacetic acid. 2) Cysteines 97 and 132 are the probable ligands for the Av2 Fe:S center which is bound symmetrically between subunits. 3) MgATP partially protects cysteine 85 from carboxymethylation by iodoacetic acid and may be part of the nucleotide-binding site. 4) Of the five nonligand thiols only cysteines 5 and 184 are completely alkylated when Av2 is denatured in hexamethylphosphoramide, whereas all five nonligand thiols appear to rapidly exchange at the Fe:S center if the protein is denatured in the absence of alkylating reagents. 5) Both Av2 and apo-Av2 appear to undergo a reversible conformational change upon binding MgATP.  相似文献   

16.
Nitrogenase of the non-heterocystous nitrogen-fixing cyanobacterium Oscillatoria limosa was subjected to western blot analysis and immunogold electron microscopy using antisera raised against dinitrogenase (MoFe-protein, Component I) and dinitrogenase reductase (Fe-protein, Component II). O. limosa was grown diazotrophically under an alternating light-dark cycle (16–8h light-dark). Although nitrogenase activity (acetylene reduction) was found predominantly during the dark phase, being absent during most of the light period, immunogold electron microscopy revealed label of both subunits of nitrogenase in samples taken throughout the light-dark cycle. It was also shown that the nitrogenase label was distributed homogeneously in the cell and that it was present in every cell of every trichome whether fixing nitrogen or not. On average, 34 (± 6) gold particles μm?2 thin section were detected. Nitrate-grown cells did not contain nitrogenase label. Western blot analysis of the Fe-protein in samples taken during the light phase, revealed a single band with an apparent molecular weight of 37 kDa. At the end of the light period, and during the dark phase when high nitrogenase activities were observed, an additional band of 36 kDa was found. The anti-MoFe-protein antiserum revealed a single band of 56 kDa which was present throughout the light-dark cycle. Nitrate-grown cells were not recognized by either antiserum. It is concluded that nitrogenase enzyme is present in O. limosa throughout the light-dark cycle but that the Fe-protein is modified (inactive form) during the light period when nitrogenase activity is absent.  相似文献   

17.
Nitrogenase of the heterocystous cyanobacterium Anabaena variabilis was inactivated in vivo (S. Reich, H. Almon, and P. B?ger, FEMS Microbiol. Lett. 34:53-56, 1986). Partially purified and modified (inactivated) dinitrogenase reductase (Fe-protein) of such cells was reactivated by isolated membrane fractions of A. variabilis or of Rhodospirillum rubrum, and acetylene reduction was measured. Reactivation requires ATP, Mg2+, and Mn2+. The activating principle is localized in the heterocyst and was found effective only when prepared from cells exhibiting active nitrogenase. It also restores the activity of modified Fe-protein from R. rubrum.  相似文献   

18.
The effects of nitric oxide (NO) on the individual components of Azotobacter vinelandii nitrogenase have been examined by kinetic and spectroscopic methods. Incubation of the Fe protein (Av2) for 1 h with stoichiometries of 4- and 8-fold molar excesses of NO to Av2 dimer resulted in a complete loss of activity of Av2 in C2H2-reduction assays. The kinetics of inactivation indicated that the minimum stoichiometry of NO to Av2 required to fully inactivate Av2 lies between 1 and 2. The rate of inactivation of Av2 activity by NO was stimulated up to 2-fold by the presence of MgATP and MgADP but was unaffected by the presence of sodium dithionite. Unexpectedly, complete inactivation of Av2 by low ratios of NO to Av2 also resulted in a complete loss of its ability to bind MgATP and MgADP. UV-visible spectroscopy indicated that the effect of NO on Av2 involves oxidation of the [4Fe-4S] center. EPR spectroscopy revealed that the loss of activity during inactivation of Av2 by NO correlated with the loss of the S = 1/2 and S = 3/2 signals. Appearance of the classical and intense iron-nitrosyl signal (g = 20.3) was only observed when Av2 was incubated with large molar excesses of NO and the appearance of this signal did not correlate with the loss of Av2 activity. The effects of NO on the MoFe protein (Av1) were more complex than for Av2. A time-dependent inactivation of Av1 activity (C2H2 reduction) was observed which required considerably higher concentrations of NO than those required to inactivate Av2 (up to 10 kPa).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and committed step in glycerolipid biosynthesis. We previously cloned the cDNA sequence to murine mitochondrial GPAT (Yet, S-F., Lee, S., Hahm, Y. T., and Sul, H.S. (1993) Biochemistry 32, 9486-9491). We expressed the protein in insect cells which was targeted to mitochondria, purified, and reconstituted mitochondrial GPAT activity using phospholipids (Yet, S.-F., Moon, Y., and Sul, H. S. (1995) Biochemistry 34, 7303-7310). Deletion of the seven amino acids from mitochondrial GPAT, (312)IFLEGTR(318), which is highly conserved among acyltransferases in glycerolipid biosynthesis, drastically reduced mitochondrial GPAT activity. Treatment of mitochondrial GPAT with arginine-modifying agents, phenylglyoxal and cyclohexanedione, inactivated the enzyme. Two highly conserved arginine residues, Arg-318, in the seven amino stretch, and Arg-278, were identified. Substitution of Arg-318 with either alanine, histidine, or lysine reduced the mitochondrial GPAT activity by over 90%. On the other hand, although substitution of Arg-278 with alanine and histidine decreased mitochondrial GPAT activity by 90%, replacement with lysine reduced activity by only 25%. A substitution of the nonconserved Arg-279 with either alanine, histidine, or lysine did not alter mitochondrial GPAT activity. Moreover, R278K mitochondrial GPAT still showed sensitivity to arginine-modifying agents, as in the case of wild-type mitochondrial GPAT. These results suggest that Arg-318 may be critical for mitochondrial GPAT activity, whereas Arg-278 can be replaced by a basic amino acid. Examination of the other conserved residues in the seven amino acid stretch revealed that Phe-313 and Glu-315 are also important, but conservative substitutions can partially maintain activity; substitution with alanine reduced activity by 83 and 72%, respectively, whereas substituting Phe-313 with tyrosine and Glu-315 with glutamine had even lesser effect. In addition, there was no change in fatty acyl-CoA selectivity. Kinetic analysis of the R318K and R318A mitochondrial GPAT showed an 89 and 95%, respectively, decrease in catalytic efficiency but no major change in substrate binding as indicated by the K(m) values for palmitoyl-CoA and glycerol 3-phosphate. These studies indicate importance of the conserved seven amino acid stretch for mitochondrial GPAT activity and the significance of Arg-318 for catalysis.  相似文献   

20.
Thromboxane A2 synthase (TXAS) is a member of the cytochrome P450 superfamily and catalyzes an isomerization reaction that converts prostaglandin H2 to thromboxane A2. As a step toward understanding the structure/function relationships of TXAS, we mutated amino acid residues predicted to bind the propionate groups of A- and D-pyrrole rings of the heme. These mutations at each of these residues (Asn-110, Trp-133, Arg-137, Arg-413, and Arg-478) resulted in altered heme binding, as evidenced by perturbation of the absorption spectra and EPR. The mutations, although causing no significant changes in the secondary structure of the proteins, induced tertiary structural changes that led to increased susceptibility to trypsin digestion and alteration of the intrinsic protein fluorescence. Moreover, these mutant proteins lost their binding affinity to the substrate analog, had a lower heme content and retained less than 5% of the wild-type catalytic activity. However, mutations at the neighboring amino acid of the aforementioned residues yielded mutant proteins retaining the biochemical and biophysical properties of the wild type TXAS. Aligning the TXAS sequence with the structurally known P450s, we proposed that in TXAS the A-ring propionate of the heme is hydrogen bonded to Asn-110, Arg-413, and Arg-478, whereas D-ring propionate is hydrogen bonded to Trp-133 and Arg-137. Furthermore, both A- and D-ring propionates bulge away from the heme plane and both lie on the proximal face of heme plane, a structure similar to P450terp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号