首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pheasant and O'Neill's torque model (1975) was modified to account for grip force distributions. The modified model suggests that skin friction produced by twisting an object in the direction of fingertips causes flexion of the distal phalanges and increases grip force and, thus, torque. Twelve subjects grasped a cylindrical object with diameters of 45.1, 57.8, and 83.2 mm in a power grip, and performed maximum torque exertions about the long axis of the handle in two directions: the direction the thumb points and the direction the fingertips point. Normal force on the fingertips increased with torque toward the fingertips, as predicted by the model. Consequently, torque toward the fingertips was 22% greater than torque toward the thumb. Measured torque and fingertip forces were compared with model predictions. Torque could be predicted well by the model. Measured fingertip force and thumb force were, on average, 27% less than the predicted values. Consistent with previous studies, grip force decreased as the handle diameter increased from 45.1 to 83.2 mm. This may be due not only to the muscle length-strength relationship, but also to major active force locations on the hand: grip force distributions suggest that a small handle allows fingertip force and thumb force to work together against the palm, resulting in a high reaction force on the palm, and, therefore, a high grip force. For a large handle, fingertip force and thumb force act against each other, resulting in little reaction force on the palm and, thus, a low grip force.  相似文献   

2.
The human opposable thumb enables the hand to perform dexterous manipulation of objects, which requires well-coordinated digit force vectors. This study investigated the directional coordination of force vectors generated by the thumb and index finger during precision pinch. Fourteen right-handed, healthy subjects were instructed to exert pinch force on an externally stabilized apparatus with the pulps of the thumb and index finger. Subjects applied forces to follow a force-ramp profile that linearly increased from 0 to 12 N and then decreased to 0 N, at a rate of ±3 N/s. Directional relationships between the thumb and index finger force vectors were quantified using the coordination angle (CA) between the force vectors. Individual force vectors were further analyzed according to their projection angles (PAs) with respect to the pinch surface planes and the shear angles (SAs) within those planes. Results demonstrated that fingertip force directions were dependent on pinch force magnitude, especially at forces below 2 N. Hysteresis was observed in the force-CA relationship for increasing and decreasing forces and fitted with exponential models. The fitted asymptotic values were 156.0±6.6° and 150.8±9.3° for increasing and decreasing force ramps, respectively. The PA of the thumb force vector deviated further from the direction perpendicular to the pinching surface planes than that of the index finger. The SA showed that the index finger force vector deviated in the ulnar-proximal direction, whereas the thumb switched its force between the ulnar-proximal and radial-proximal directions. The findings shed light on the effects of anatomical composition, biomechanical function, and neuromuscular control in coordinating digit forces during precision pinch, and provided insight into the magnitude-dependent force directional control which potentially affects a range of dexterous manipulations.  相似文献   

3.
Modeling of the human hand provides insight for explaining deficits and planning treatment following injury. Creation of a dynamic model, however, is complicated by the actions of multi-articular tendons and their complex interactions with other soft tissues in the hand. This study explores the creation of a musculoskeletal model, including the thumb and index finger, to explore the effects of muscle activation deficits. The OpenSim model utilizes physiological axes of rotation at all joints, passive joint torques, and appropriate moment arms. The model was validated through comparison with kinematic and kinetic experimental data. Simulated fingertip forces resulting from modeled musculotendon loading largely fell within one standard deviation of experimental ranges for most index finger and thumb muscles, although agreement in the sagittal plane was generally better than for the coronal plane. Input of experimentally obtained electromyography data produced the expected simulated finger and thumb motion. Use of the model to predict the effects of activation deficits on pinch force production revealed that the intrinsic muscles, especially first dorsal interosseous (FDI) and adductor pollicis (ADP), had a substantial impact on the resulting fingertip force. Reducing FDI activation, such as might occur following stroke, altered fingertip force direction by up to 83° for production of a dorsal fingertip force; reducing ADP activation reduced force production in the thumb by up to 62%. This validated model can provide a means for evaluating clinical interventions.  相似文献   

4.
An extended exposure to repeated loading on fingertip has been associated to many vascular, sensorineural, and musculoskeletal disorders in the fingers, such as carpal tunnel syndrome, hand-arm vibration syndrome, and flexor tenosynovitis. A better understanding of the pathomechanics of these sensorineural and vascular diseases in fingers requires a formulation of a biomechanical model of the fingertips and analyses to predict the mechanical responses of the soft tissues to dynamic loading. In the present study, a model based on finite element techniques has been developed to simulate the mechanical responses of the fingertips to dynamic loading. The proposed model is two-dimensional and incorporates the essential anatomical structures of a finger: skin, subcutaneous tissue, bone, and nail. The skin tissue is assumed to be hyperelastic and viscoelastic. The subcutaneous tissue was considered to be a nonlinear, biphasic material composed of a hyperelastic solid and an invicid fluid, while its hydraulic permeability was considered to be deformation dependent. Two series of numerical tests were performed using the proposed finger tip model to: (a) simulate the responses of the fingertip to repeated loading, where the contact plate was assumed to be fixed, and the bone within the fingertip was subjected to a prescribed sinusoidal displacement in vertical direction; (b) simulate the force response of the fingertip in a single keystroke, where the keyboard was composed of a hard plastic keycap, a rigid support block, and a nonlinear spring. The time-dependent behavior of the fingertip under dynamic loading was derived. The model predictions of the time-histories of force response of the fingertip and the phenomenon of fingertip separation from the contacting plate during cyclic loading agree well with the reported experimental observations.  相似文献   

5.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

6.
This study investigated the effects of modifying contact finger forces in one direction-normal or tangential-on the entire set of the contact forces, while statically holding an object. Subjects grasped a handle instrumented with finger force-moment sensors, maintained it at rest in the air, and then slowly: (1) increased the grasping force, (2) tried to spread fingers apart, and (3) tried to squeeze fingers together. Analysis was mostly performed at the virtual finger (VF) level (the VF is an imaginable finger that generates the same force and moment as the four fingers combined). For all three tasks there were statistically significant changes in the VF normal and tangential forces. For finger spreading/squeezing the tangential force neutral point was located between the index and middle fingers. We conclude that the internal forces are regulated as a whole, including adjustments in both normal and tangential force, instead of only a subset of forces (normal or tangential). The effects of such factors as EFFORT and TORQUE were additive; their interaction was not statistically significant, thus supporting the principle of superposition in human prehension.  相似文献   

7.
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.  相似文献   

8.
We evaluated whether lumped-parameter non-linear viscoelastic models of human fingertip tissue can describe fingertip force-displacement characteristics during a range of rapid, dynamic tapping tasks. Eight human subjects tapped with their index finger on the surface of a rigid load cell while an optical system tracked fingertip position using an infra-red LED attached to the fingernail. Four different tapping conditions were tested: normal and high-speed taps with a relaxed hand, and normal and high-speed taps with the other fingers co-contracted. A non-linear viscoelastic model comprised of an instantaneous stiffness function and viscous relaxation function was capable of predicting fingertip tissue force response due to measured pulp compression under these four different loading conditions. The model could successfully reconstruct very rapid (less than 5 ms) force transients, and forces occurring over time periods greater than 100 ms, with errors of 10%. Model parameters varied by less than 20% over the four conditions, despite almost 3-fold differences in average forces and 38% differences in fingertip velocities. Energy dissipation by the fingertip averaged 81%, and varied little (<3%) across conditions, despite a 1. 5-fold range of energy input. The ability of a lumped-parameter model to describe fingertip force-displacement characteristics during a range of conditions contributes both to understanding the transmission of force through the fingertip to the musculoskeletal system and to predicting the stimulation of mechano-receptors located within the fingertip.  相似文献   

9.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

10.
Hand strength data are needed to understand and predict hand postures and finger loads while placing the hand on an object or surface. This study aims to analyze the effect of hand posture and surface orientation on hand force while pressing a flat surface. Twelve participants, 6 females and 6 males ages 19–25, performed three exertions (100%, 30% and 10% MVC- Maximum Voluntary Contraction) perpendicular to a plate in 4 angles (−45°, 0°, 45° and 90° with respect to the horizontal plane) at elbow height. Exertions involved pushing in two postures: (1) whole hand and (2) constrained to only using the fingertips. Inter-digit joint angles were recorded to map hand and finger motions and estimate joint moments for each condition. Participants exerted twice the force when pushing with whole hand vs. fingertips. 72–75% of the total force was exerted over the base of the palm, while only 11–13% with the thumb for exertions at 90°, 45° or 0° plate angles. Males maximum force for pushing at 0°, 45° and 90° plates averaged 49% higher than females for the whole hand and 62% for the fingertips (p < 0.01). There was no significant sex difference (p > 0.05) for the −45° plate. Thumb joint loads were generally higher than the other individual fingers (p < 0.05) in all % MVC and accounted for 12% of total force during whole hand exertions. On average, joint moments were 30% higher during fingertip conditions vs. whole hand. Thumb and finger joint moment magnitudes when pushing the plate at 100% MVC indicated that Metacarpophalangeal (MCP) joint moments were higher (p < 0.05) than Distal Interphalangeal joints (DIP) and Proximal Interphalangeal joints (PIP) under whole hand and fingertips conditions.  相似文献   

11.
This study investigated synergistic actions of hand–pen contact forces during circle drawing tasks in three-dimensional (3D) space. Twenty-four right-handed participants drew thirty concentric circles in the counterclockwise (CCW) and clockwise (CW) directions. Three-dimensional forces acting on an instrumented pen as well as 3D linear and angular positions of the pen were recorded. These contact forces were then transformed into the 3D radial, tangential, and normal force components specific to circle drawing. Uncontrolled manifold (UCM) analysis was employed to calculate the magnitude of the hand–pen contact force synergy. Three hypotheses were tested. First, hand–pen contact force synergies during circle drawing are dependent on the angular position of the pen tip. Second, hand–pen contact force synergies are dependent on force components in circle drawing. Third, hand–pen contact force synergies are greater in CCW direction than CW direction. The results showed that the strength of the hand–pen contact force synergy increased during the initial phase of circle drawing and decreased during the final phase. The synergy strength was greater for the radial and tangential components as compared to the normal component. Also, the circle drawing in CW direction was associated with greater hand–pen contact force synergy than the CCW direction. The results of this study suggest that the central nervous system (CNS) prioritizes hand–pen contact force synergies for the force components (i.e., radial and tangential) that are critical for circle drawing. The CNS modulates hand–pen contact force synergies for preparation and conclusion of circle drawing, respectively.  相似文献   

12.
We studied age-related changes in the performance of maximal and accurate submaximal force and moment production tasks. Elderly and young subjects pressed on six dimensional force sensors affixed to a handle with a T-shaped attachment. The weight of the whole system was counterbalanced with another load. During tasks that required the production of maximal force or maximal moment by all of the digits, young subjects were stronger than elderly. A greater age-related deficit was seen in the maximal moment production tests. During maximal force production tests, elderly subjects showed larger relative involvement of the index and middle fingers; they moved the point of thumb force application upward (toward the index and middle fingers), whereas the young subjects rolled the thumb downward. During accurate force/moment production trials, elderly persons were less accurate in the production of both total moment and total force. They produced higher antagonistic moments, i.e., moment by fingers that acted against the required direction of the total moment. Both young and elderly subjects showed negative covariation of finger forces across repetitions of a ramp force production task. In accurate moment production tasks, both groups showed negative covariation of two components of the total moment: those produced by the normal forces and those produced by the tangential forces. However, elderly persons showed lower values of the indexes of both finger force covariation and moment covariation. We conclude that age is associated with an impaired ability to produce both high moments and accurate time profiles of moments. This impairment goes beyond the well-documented deficits in finger and hand force production by elderly persons. It involves worse coordination of individual digit forces and of components of the total moment. Some atypical characteristics of finger forces may be viewed as adaptive to the increased variability in the force production with age.  相似文献   

13.
Motile cilia are unique multimotor systems that display coordination and periodicity while imparting forces to biological fluids. They play important roles in normal physiology, and ciliopathies are implicated in a growing number of human diseases. In this work we measure the response of individual human airway cilia to calibrated forces transmitted via spot-labeled magnetic microbeads. Cilia respond to applied forces by 1), a reduction in beat amplitude (up to an 85% reduction by 160-170 pN of force); 2), a decreased tip velocity proportionate to applied force; and 3), no significant change in beat frequency. Tip velocity reduction occurred in each beat direction, independently of the direction of applied force, indicating that the cilium is “driven” in both directions at all times. By applying a quasistatic force model, we deduce that axoneme stiffness is dominated by the rigidity of the microtubules, and that cilia can exert 62 ± 18 pN of force at the tip via the generation of 5.6 ± 1.6 pN/dynein head.  相似文献   

14.
15.
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1 N to 6 N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2 N/mm to 7.7 N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping.  相似文献   

16.
The analysis of the mechanics of the contact interactions of fingers/handle and the stress/strain distributions in the soft tissues in the fingertip is essential to optimize design of tools to reduce many occupation-related hand disorders. In the present study, a three-dimensional (3D) finite element (FE) model for the fingertip is proposed to simulate the nonlinear and time-dependent responses of a fingertip to static and dynamic loadings. The proposed FE model incorporates the essential anatomical structures of a finger: skin layers (outer and inner skins), subcutaneous tissue, bone and nail. The soft tissues (inner skin and subcutaneous tissue) are considered to be nonlinearly viscoelastic, while the hard tissues (outer skin, bone and nail) are considered to be linearly elastic. The proposed model has been used to simulate two loading scenarios: (a) the contact interactions between the fingertip and a flat surface and (b) the indentation of the fingerpad via a sharp wedge. For case (a), the predicted force/displacement relationships and time-dependent force responses are compared with the published experimental data; for case (b), the skin surface deflection profiles were predicted and compared with the published experimental observations. Furthermore, for both cases, the time-dependent stress/strain distributions within the tissues of the fingertip were calculated. The good agreement between the model predictions and the experimental observations indicates that the present model is capable of predicting realistic time-dependent force/displacement responses and stress/strain distributions in the soft tissues for dynamic loading conditions.  相似文献   

17.
The analysis of the mechanics of the contact interactions of fingers/handle and the stress/strain distributions in the soft tissues in the fingertip is essential to optimize design of tools to reduce many occupation-related hand disorders. In the present study, a three-dimensional (3D) finite element (FE) model for the fingertip is proposed to simulate the nonlinear and time-dependent responses of a fingertip to static and dynamic loadings. The proposed FE model incorporates the essential anatomical structures of a finger: skin layers (outer and inner skins), subcutaneous tissue, bone and nail. The soft tissues (inner skin and subcutaneous tissue) are considered to be nonlinearly viscoelastic, while the hard tissues (outer skin, bone and nail) are considered to be linearly elastic. The proposed model has been used to simulate two loading scenarios: (a) the contact interactions between the fingertip and a flat surface and (b) the indentation of the fingerpad via a sharp wedge. For case (a), the predicted force/displacement relationships and time-dependent force responses are compared with the published experimental data; for case (b), the skin surface deflection profiles were predicted and compared with the published experimental observations. Furthermore, for both cases, the time-dependent stress/strain distributions within the tissues of the fingertip were calculated. The good agreement between the model predictions and the experimental observations indicates that the present model is capable of predicting realistic time-dependent force/displacement responses and stress/strain distributions in the soft tissues for dynamic loading conditions.  相似文献   

18.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

19.
The finger pads of eight subjects were loaded by tangential displacement (x-perpendicular to the long axis of the finger) of a contacted surface when the distal and proximal interphalangeal joints (DIP and PIP, respectively) were alternately constrained. The finger pad responded in a linearly viscoelastic manner during loading, but exhibited highly nonlinear behavior upon unloading. The observed tangential force (F(T)) relaxations were nonlinear and could be modeled well by a logarithmic function. The average F(T) relaxation duration (tau) was 11.8 s. Apparent tangential stiffness (kT), determined by F(T) after relaxation, varied linearly with normal force. With the DIP joints constrained the fingers showed significantly larger stiffness than with the PIP joints constrained (p<0.001). Implications for finger force coordination studies are discussed.  相似文献   

20.
A technique to determine friction at the fingertips   总被引:2,自引:0,他引:2  
This article proposes a technique to calculate the coefficient of friction for the fingertip- object interface. Twelve subjects (6 males and 6 females) participated in two experiments. During the first experiment (the imposed displacement method), a 3-D force sensor was moved horizontally while the subjects applied a specified normal force (4 N, 8 N, 12 N) on the surface of a sensor covered with different materials (sandpaper, cotton, rayon, polyester, and silk).The normal force and the tangential force (i.e., the force due to the sensor motion) were recorded. The coefficient of friction (mu(d)) was calculated as the ratio between the tangential force and the normal force. In the second experiment (the beginning slip method), a small instrumented object was gripped between the index finger and the thumb, held stationary in the air, and then allowed to drop. The weight (200 g, 500 g, and 1,000 g) and the surface (sandpaper, cotton, rayon, polyester, and silk) in contact with the digits varied across trials. The same sensor as in the first experiment was used to record the normal force (in a horizontal direction) and the tangential force (in the vertical direction). The slip force (i.e., the minimal normal force or grip force necessary to prevent slipping) was estimated as the force at the moment when the object just began to slip. The coefficient of friction was calculated as the ratio between the tangential force and the slip force. The results show that (1) the imposed displacement method is reliable; (2) except sandpaper, for all other materials the coefficient of friction did not depend on the normal force; (3) the skin-sandpaper coefficient of friction was the highest mu(d) =0.96+/-0.09 (for 4-N normal force) and the skin-rayon rayon coefficient of friction was the smallest mu(d) =0.36+/-0.10; (4) no significant difference between the coefficients of friction determined with the imposed displacement method and the beginning slip method was observed. We view the imposed displacement technique as having an advantage as compared with the beginning slip method, which is more cumbersome (e.g., dropped object should be protected from impacts) and prone to subjective errors owing to the uncertainty in determining the instance of the slip initiation (i.e., impeding sliding).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号