首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Symbiotic and parasitic relationships can alter the degree of endoreduplication in plant cells, and a limited number of studies have documented this occurrence in root cells colonized by arbuscular mycorrhizal (AM) fungi. However, this phenomenon has not been tested in a wide range of plant species, including species that are non-endopolyploid and those that do not associate with AM fungi. We grew 37 species belonging to 16 plant families, with a range of genome sizes and a range in the degree of endopolyploidy. The endoreduplication index (EI) was compared between plants that were inoculated with Glomus irregulare and plants that were not inoculated. Of the species colonized with AM fungi, 22 of the 25 species had a significant increase in endopolyploid root nuclei over non-mycorrhizal plants, including species that do not normally exhibit endopolyploidy. Changes in the EI were strongly correlated (R(2) = 0.619) with the proportion of root length colonized by arbuscules. No change was detected in the EI for the 12 non-mycorrhizal species. This work indicates that colonization by symbiotic fungi involves a mechanism to increase nuclear DNA content in roots across many angiosperm groups and is likely linked to increased metabolism and protein production.  相似文献   

5.
6.
Arbuscular mycorrhizal (AM) fungi extensively colonize the root cortex under low-soil-phosphate (P) conditions, whereas infection is limited under high-P conditions. Fungal growth under both P conditions might be influenced by plant defence-related gene expression. In this study, we used in situ hybridization methods to compare the cellular localization of three defence-related mRNAs in non-infected bean roots and in relation to fungal infection units. In non-infected and infected roots, mRNAs encoding acidic and basic endochitinases were generally most abundant in the vascular cylinder. High-P-grown mycorrhizal roots showed localized accumulation of the acidic endochitinase mRNA in cortical cells containing arbuscules and in their immediate vicinity (one to five cell layers). The pattern of accumulation of the basic endochitinase mRNA was not affected by P or AM fungal infection. At the low P concentration, the β-1,3-glucanase mRNA accumulated predominantly in the vascular cylinder of non-infected roots. Suppression of β-1,3-glucanase mRNA accumulation in these tissues was observed in non-infected roots at the high-P and in mycorrhizal roots at both P concentrations. The observed suppression extends at least several mm from fungal infection units, characterizing a systemic effect. Beta-1,3-glucanase mRNA accumulated also around a number of cortical cells containing arbuscules only at the low P concentration. The localized accumulations of the endochitinase and β-1,3-glucanase mRNAs suggest that the encoded proteins might be involved in the control of intraradical fungal growth.  相似文献   

7.
Abstract

Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi.  相似文献   

8.
9.
运用nested-PCR技术和AM真菌特异性引物,建立了用新鲜植物根段直接检测AM真菌的分子生物学方法。以真核生物通用引物LR1和NDL22对混合接种的西红柿新鲜根段进行第1次扩增,将其产物进行稀释,再分别以Glomus intraradices 和Glomus mosseae的种特异性引物8.22和5.25进行第2次扩增。在琼脂糖凝胶上观察到AM真菌种特异性条带;运用该技术检测出混合接种时同一根段内不同的AM真菌,并探讨了真菌在植物根部的竞争性侵染。用盆栽方式种植西红柿,混合接种G. intraradices 和G. mosseae,在1个月后,前者侵染占优势。  相似文献   

10.
丛枝菌根真菌侵染势与接种势之间的关系   总被引:2,自引:0,他引:2  
丛枝菌根(AM)真菌的侵染势(Colonizationpotential,CP)和接种势(inoculumpotential,IP)是菌根学领域非常重要的两个概念。IP已定义为接种物中有活力的真菌繁殖体及结构的数量(Liu&Luo,1994)。而CP的定量描述和测定方法尚未建立。本文将CP定义为单位数量接种物在侵染初期侵染植物根系的能力,其定量测定公式为:CP=N×L/IP×T,其中N为单位根长侵入点数+根内和根外菌丝数+含有丛枝的细胞数+泡囊数;L为每株寄主植物根系总长度;IP为接种物的接种势单位数;T为接种后的天数。用棉花(Gossypiumhirsutum)、大豆(Glycinemax)、红三叶(Trifoliumpratense)和玉米(Zeamays)和3种AM真菌Gigasporamargarita(Gim),Glomusintraradices(Gi),andGlomusversiforme(Gv)不同剂量(100,300,900,2700and8100接种势单位)的接种物进行试验,以定量测定CP、以及CP和IP之间的关系。结果表明,在相同数量的IP条件下,不同AM真菌具有不同的CP,应用该研究…  相似文献   

11.
Summary— Positional and structural modifications were demonstrated in nuclei of leek cells, after establishment of a symbiosis with two vesicular-arbuscular fungi, Glomus versiforme and Glomus E3. By combining light, immuno-electron microscopy and morphometry, the fungi were shown to have a direct effect on the host nuclear morphology: the effect was confined to a specific plant tissue (the cortical parenchyma) and to a moment of the fungal morphogenesis (the arbuscule). When they branch to form the complex structures called arbuscules in the inner parenchyma cells, the host nucleus migrates from the periphery of these cells towards their centre. In addition, it becomes larger and lobed, with a decondensed chromatin. A monoclonal antibody that mostly binds to the condensed chromatin revealed a significant decrease in gold labelling intensity over the nuclei of the colonized cells. These modifications suggest that the nuclear migration and the changes in chromatin organization are related to the modifications in gene expression observed during the establishment of mycorrhizal symbiosis.  相似文献   

12.
Medicago truncatula, a diploid autogamous legume, is currently being developed as a model plant for the study of root endosymbiotic associations, including nodulation and mycorrhizal colonization. An important requirement for such a plant is the possibility of rapidly introducing and analyzing chimeric gene constructs in root tissues. For this reason, we developed and optimized a convenient protocol for Agrobacterium rhizogenes-mediated transformation of M. truncatula. This unusual protocol, which involves the inoculation of sectioned seedling radicles, results in rapid and efficient hairy root organogenesis and the subsequent development of vigorous "composite plants." In addition, we found that kanamycin can be used to select for the cotransformation of hairy roots directly with gene constructs of interest. M. truncatula composite plant hairy roots have a similar morphology to normal roots and can be nodulated successfully by their nitrogen-fixing symbiotic partner, Sinorhizobium meliloti. Furthermore, spatiotemporal expression of the Nod factor-responsive reporter pMtENOD11-gusA in hairy root epidermal tissues is indistinguishable from that observed in Agrobacterium tumefaciens-transformed lines. M. truncatula hairy root explants can be propagated in vitro, and we demonstrate that these clonal lines can be colonized by endomycorrhizal fungi such as Glomus intraradices with the formation of arbuscules within cortical cells. Our results suggest that M. truncatula hairy roots represent a particularly attractive system with which to study endosymbiotic associations in transgenically modified roots.  相似文献   

13.
Psam 1 is a single-copy gene which is activated during early plant-fungal interaction in wild-type pea inoculated with Glomus mosseae and which codes for PSAM 1, a putative protein of 108 amino acids. A synthetic peptide was designed in an antigenic region of this protein to produce a polyclonal antibody against PSAM 1 and to investigate its cellular localization. Western blot analysis revealed that a polypeptide of about 14.5 kDa accumulated more in mycorrhizal than non-mycorrhizal pea roots. The PSAM 1 antigen was immunolocated in planta in arbuscule-containing cells of mycorrhizal roots and especially in the cytoplasm surrounding young arbuscules in cortical cells, which suggests that its accumulation is somehow related to the symbiotic state of these cells. Received: 27 June 1998 / Accepted: 27 July 1998  相似文献   

14.
BACKGROUND AND AIMS: Previous methods for isolation of arbuscules from mycorrhizal roots are time-consuming, complex and expensive. Therefore, a simple, rapid and inexpensive method for the isolation of metabolically active arbuscules from plant root of an increased-arbuscule-forming mutant of Lotus japonicus (Ljsym78-2) is described. METHODS: Roots of the L. japonicus mutant plants Ljsym78-2 colonized by Glomus sp. were separated from soil, washed with water, immersed in CaSO(4) before being cut into 5-mm pieces and homogenized with a Waring blender at 6000 rpm for 30 s. The arbuscules were purified by separation from plant tissues with a 50-mum nylon mesh, finally collecting on a 30-mum nylon mesh. Enzyme histochemical staining showed that the collected arbuscules had succinate dehydrogenase, alkaline phosphatase and acid phosphatase activities. KEY RESULTS AND CONCLUSIONS: The enzymic activity of the arbuscules was not affected after the isolation process. The establishment of this simple, rapid and inexpensive method for the isolation of metabolically active arbuscules will be useful to clarify the biochemical processes occurring in nutrient exchange at the arbuscular interface.  相似文献   

15.
Harrison MJ  Dewbre GR  Liu J 《The Plant cell》2002,14(10):2413-2429
Many plants have the capacity to obtain phosphate via a symbiotic association with arbuscular mycorrhizal (AM) fungi. In AM associations, the fungi release phosphate from differentiated hyphae called arbuscules, that develop within the cortical cells, and the plant transports the phosphate across a symbiotic membrane, called the periarbuscular membrane, into the cortical cell. In Medicago truncatula, a model legume used widely for studies of root symbioses, it is apparent that the phosphate transporters known to operate at the root-soil interface do not participate in symbiotic phosphate transport. EST database searches with short sequence motifs shared by known phosphate transporters enabled the identification of a novel phosphate transporter from M. truncatula, MtPT4. MtPT4 is significantly different from the plant root phosphate transporters cloned to date. Complementation of yeast phosphate transport mutants indicated that MtPT4 functions as a phosphate transporter, and estimates of the K(m) suggest a relatively low affinity for phosphate. MtPT4 is expressed only in mycorrhizal roots, and the MtPT4 promoter directs expression exclusively in cells containing arbuscules. MtPT4 is located in the membrane fraction of mycorrhizal roots, and immunolocalization revealed that MtPT4 colocalizes with the arbuscules, consistent with a location on the periarbuscular membrane. The transport properties and spatial expression patterns of MtPT4 are consistent with a role in the acquisition of phosphate released by the fungus in the AM symbiosis.  相似文献   

16.
17.
Paris- type mycorrhiza is described in Smilax aspera L., an evergreen climbing plant of Mediterranean sclerophyllous woods. Wild plants were sampled from a protected area inside the Regional Natural Park Migliarino-S.Rossore-Massaciuccoli, on the northwestern coast of Italy, near Pisa. Mycorrhizas formed by S. aspera were identified as a variation of Paris-type arbuscular mycorrhizas. Detailed observations on stained roots and on fresh root sections showed that, after forming the appressorium, the fungus colonized the root by penetrating individual cells, growing intracellularly from cell to cell, and producing many coils and terminal arbuscules. S. aspera seedlings inoculated with the arbuscular mycorrhizal fungi Glomus mosseae and G. viscosum, which are known to form Arum-type mycorrhizas in many plant species, produced the same Paris-type-like mycorrhizas found in nature. This confirms that the type of arbuscular mycorrhizal infection is largely governed by the plant host genotype. Plants of S. aspera inoculated with G. mosseae and G. viscosum had larger growth increments than uninoculated plants. Thus Paris-type mycorrhizas produce growth responses comparable to those of Arum-type mycorrhizas. Accepted: 11 January 2000  相似文献   

18.
The diaminobenzidine (DAB) staining technique was used to examine the accumulation of H2O2 in parts of roots of Medicago truncatula Gaertn. colonized by the arbuscular mycorrhiza (AM)-forming fungus Glomus intraradices Schenk and Smith. At the cellular level, the combination of bright-field and fluorescence microscopy revealed that a brownish stain, indicative of H2O2 accumulation was present within cortical root cells in the space occupied by arbuscules. Accumulation of H2O2 was especially pronounced in cells containing arbuscules that were clumped and less branched. Moreover, H2O2 accumulated around hyphal tips attempting to penetrate a host cell. In contrast, no H2O2 accumulation was observed in hyphal tips growing along the middle lamella, or in appressoria or vesicles. On the basis of these findings we suggest that a locally restricted oxidative burst is involved in the temporal and spatial control of the intracellular colonization of M. truncatula cells by the AM-forming fungus G. intraradices. Received: 1 October 1998 / Accepted: 22 December 1998  相似文献   

19.
20.
Pathogenic fungi have always been a major problem in agriculture. One of the effective methods for controlling pathogen fungi to date is the introduction of resistance genes into the genome of crops. It is interesting to find out whether the induced resistance in crops will have a negative effect on non-target organisms such as root colonization with the AM fungi. The objective of the present research was to study the influence of producing antifungal molecules by four transgenic pea (Pisum sativum L.) lines expressing PGIP gene from raspberry, VST-stilbene synthase from vine, a hybrid of PGIP/VST and bacterial Chitinase gene (Chit30) from Streptomyces olivaceoviridis respectively on the colonization potential of Glomus intraradices. Four different experiments were done in greenhouse and climate chamber, colonization was observed in all replications. The following parameters were used for evaluation: frequency of mycorrhization, the intensity of mycorrhization, the average presence of arbuscules within the colonized areas and the presence of arbuscules in the whole root system which showed insignificant difference between transgenic and non-transgenic plants. The root/shoot ratio exhibited different values according to the experiment condition. Compared with negative non-transgenic control all transgenic lines showed the ability to establish symbiosis and the different growth parameters had insignificant effect due to mycorrhization. The results of the present study proved that the introduced pathogen resistance genes did not affect the mycorrhization allocations in pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号