首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A 370 base pair (bp) fragment of R1162 DNA encoding the incompatibility determinant has been cloned and sequenced. The DNA is located between 6.1 and 6.5 on the R1162 map, near the origin of replication. The sequence contains three perfectly conserved 20 bp direct repeats, with 11 bp of this sequence repeated a fourth time. The direct repeat unit shows some homology with that of another, unrelated broad host-range plasmid, RK2. The cloned DNA has two other properties: it lowers the copy number of R1162 when cloned into this plasmid, and it is required in cis for replication of R1162 satellite plasmids.  相似文献   

2.
Summary The broad host range plasmid R1162 contains a directly repeated, 20 bp DNA sequence in the region of the plasmid required in cis for replication and maintenance. This sequence has been chemically synthesized and cloned, and shown to be sufficient for expression of plasmid incompatibility. The sequence also inhibits replication of R1162 DNA in a cell-free system. The strengths of both these effects are determined by the number of direct repeats (DRs) present, and are also affected to similar degrees by different mutations within the repeated sequence. Several of the mutations were tested for their effect in cis on plasmid maintenance in the cell, and one was found to cause an increase in plasmid copy number. The results suggest that the direct repeats exert incompatibility by inhibiting DNA replication, presumably because they are the binding sites for a limiting essential protein.Abbreviations bp base pairs - Cbr, Kmr, Smr resistance to carbenicillin, kanamycin, streptomycin, respectively - DR direct repeat  相似文献   

3.
E C Becker  H Zhou    R J Meyer 《Journal of bacteriology》1996,178(16):4870-4876
The origin of replication of the plasmid R1162 contains an initiation site for the synthesis of each DNA strand. When one of these sites (oriL) is deleted, synthesis on the corresponding strand is no longer initiated efficiently in vitro by the R1162-encoded replication proteins, and the plasmid is no longer stably maintained in the cell. However, in vivo the two strands of the plasmid duplex molecule are active at a similar level as templates for DNA synthesis, and newly synthesized copies of each strand are incorporated into daughter molecules at a similar rate. No secondary, strong initiation sites on the delta oriL strand were detected in the region of the origin. The delta oriL plasmid induces the SOS response, and this is important for plasmid maintenance even in a recombination-proficient strain. Our results indicate that an SOS-induced host system can maintain an R1162 derivative lacking one of its initiation sites.  相似文献   

4.
L S Lin  R J Meyer 《Plasmid》1986,15(1):35-47
DNA required in cis for the replication of the broad-host-range plasmid R1162 is located on two contiguous HpaII fragments of 210 and 370 bp. The latter of these contains three and one-half, perfectly conserved, 20-bp directly repeated sequences. The significance of these for plasmid replication, incompatibility, and copy-number control was examined by generating deletions into these repeats and testing the properties of the remaining DNA. We conclude from the results that the direct repeats are essential for expression of incompatibility and for the decrease in copy number observed when the directly repeated DNA is cloned into R1162. Little, if any, additional DNA is required from the ori region for these properties. Moreover, deletions of intermediate size result in an intermediate level of incompatibility, indicating the importance of the periodic structure of the direct repeats. The directly repeated DNA is also required for an active origin of replication, as are additional, nonrepeated sequences adjacent to this DNA. The properties of the direct repeats are discussed with respect to their possible role in the replication of R1162 DNA.  相似文献   

5.
H S Zhou  C Byrd    R J Meyer 《Nucleic acids research》1991,19(19):5379-5383
The E.coli Tus protein is an anti-helicase involved in the termination of chromosome replication. The binding site for this protein, ter, was cloned into derivatives of the broad host-range plasmid R1162. The ter site caused the orientation-specific termination of plasmid replication fork movement in cell extracts containing Tus. Plasmids were constructed so that two sites for initiation of R1162 replication flanked the iteron-containing domain of the origin. In these plasmids, the site next to the AT-rich region within the iteron-containing domain was more active. In addition, when ter was placed between the more active site and the iterons, initiation of replication from this site was specifically inhibited. The data support a model for entry of the essential, plasmid-encoded helicase at one side of the direct repeats, and for its movement primarily in one direction away from these repeats to activate the initiation sites for DNA replication.  相似文献   

6.
We report mapping of active replication origins in thaum‐ and euryarchaeal replicons using high‐throughput sequencing‐based marker frequency analysis. The chromosome of the thaumarchaeon Nitrosopumilus maritimus is shown to contain a single origin of replication, whereas the main chromosome in the halophilic euryarchaea Haloferax mediterranei and Haloferax volcanii each contains two origins. All replication origins specified bidirectional replication, and the two origins in the halophiles were initiated in synchrony. The pHM500 plasmid of H. mediterranei is shown to contain a single origin, and the copy numbers of five plasmid replicons in the two halophiles were inferred to be close to that of the main chromosome. Origin recognition boxes (ORBs) that provide binding sites for Orc1/Cdc6 replication initiator proteins are identified at all chromosomal origins, as well as in a range of additional thaumarchaeal species. An annotation update is provided for all three species.  相似文献   

7.
Summary The plasmid pOri3 is a derivative of the origin of replication of pSa. Replication is defective as a result of a truncated repA gene, the product of which is required for plasmid replication. The defective replication is complemented by the presence of the intact repA gene of pSa, or by the presence of the plasmid R6K. The basis of this complementation has been examined by comparing the nucleotide sequence of the origin of pSa with that of R6K. A 13 base pair sequence present twice in the origin of pSa has homology with a 13 base pair sequence that is present fourteen times in the origin of R6K. These sequences may be the binding sites for the initiator proteins of these two plasmids. The location of these binding sites relative to the genes for the initiator proteins suggests that an autoregulatory control mechanism for the synthesis of the initiator proteins may also play a role in the control of plasmid copy number.  相似文献   

8.
The origin of replication of the broad host-range plasmid R1162 contains two, oppositely facing initiation sites for DNA synthesis. Either of these sites can be deleted from an R1162 plasmid derivative. However, the resulting plasmids are unstable, maintained at a lower copy-number in the cell, and form dimers and other recombinants that are required for propagation of the plasmid. In vitro, a derivative lacking one initiation site is deficient in synthesis of the strand normally initiated from that site. The properties of the intact origin are restored if it contains two oppositely facing sites; one initiation site may substitute for the other, and each site need not be in its original orientation. Overall, the results suggest that synthesis of each strand of R1162 DNA is initiated at a single site, and that there is no efficient system for initiation of lagging strand synthesis during transit of the replication forks.  相似文献   

9.
Summary A physical map for plasmid R1162 (Sm, Su, IncP4) was constructed. Neither EcoRI, PstI nor EcaI cut within a region essential for replication, mobilization or streptomycin resistence. Plasmid R1162 can replicate in E. coli as well as in Pseudomonas species and shows a strong dependence for DNA polymerase I in E. coli. By RP4 induced mobilization, R1162 can be transferred from E. coli to Pseudomonas AM1. A hybrid plasmid pFG7 (MW=8.4×106, Sm, Su, Ap, Tc) was constructed between pBR322 and R1162, which allows the selection of hybrid plasmids by insertional inactivation with the restriction enzymes HindIII, BamHI, SalI, ClaI. Transformation of E. coli SK1592 with EcaI-cut and ligated R1162-DNA and Pseudomonas AM1-DNA and subsequent mobilization of the hybrid plasmids into Pseudomonas AM1/M15a (methanol dehydrogenase-) led to the isolation of Pseudomonas AM1/M15a colonies, which could grow on methanol again. Back-conjugation into E. coli SK1592, subsequent mobilization studies and plasmid analysis suggests that the gene for Pseudomonas methanol dehydrogenase has been cloned in this vector.  相似文献   

10.
Summary The effects of an intercalating dye, ethidium bromide (EtBr), on the initiation of chromosome replication in Bacillus subtilis were studied. Spores of a thymine requiring mutant acquired the ability to initiate one round of replication in the absence of RNA and protein synthesis (initiation potential) during germination in a thymine starved medium. When EtBr was added after the initiation potential was fully established, initiation of replication was completely inhibited. This inhibition was reversible, and initiation was resumed when the drug was removed. The recovery of initiation occurred in the absence of protein synthesis but did require RNA synthesis and an active dna gene product.During germination both a DNA-protein complex and a DNA-membrane complex were formed at the replication origin in parallel with the establishment of initiation potential. EtBr destroyed both of these complexes at the concentration which inhibited initiation.The first round of replication of a plasmid DNA, pSL103, during spore germination was also prevented by EtBr. However a higher concentration was required to inhibit plasmid replication. It was found that the plasmid formed two complexes identical to the S- and M-complex of the chromosome origin. Compared to the chromosome complexes the plasmid complexes were less sensitive to EtBr. The loss of sensitivity was equivalent to that for the initiation of the plasmid compared to the chromosome. These results indicate that the target of EtBr is the DNA in the S- and M-complexes whose conformation is essential for the initiation of chromosome and plasmid replication.III of this series is Murakami et al. 1976  相似文献   

11.
R Bernander  M Krabbe    K Nordstrm 《The EMBO journal》1992,11(12):4481-4487
We have previously constructed Escherichia coli strains in which an R1 plasmid is integrated into the origin of chromosome replication, oriC. In such intR1 strains, oriC is inactive and initiation of chromosome replication instead takes place at the integrated R1 origin. Due to the large size of the chromosome, replication intermediates generated at the R1 origin in these strains are considerably more long-lived than those in unintegrated R1 plasmids. We have taken advantage of this and performed primer extensions on total DNA isolated from intR1 strains, and mapped the free 5' DNA ends that were generated as replication intermediates during R1 replication in vivo. The sensitivity of the mapping was considerably improved by the use of a repeated primer extension method (RPE). The free DNA ends were assumed to represent normal in vivo start sites for leading strand DNA synthesis in plasmid R1. The ends were mapped to a short region approximately 380 bp away from the R1 minimal origin, and the positions agreed well with previous in vitro mappings. The same start positions were also utilized in the absence of the DnaA protein, indicating that DnaA is not required for determination of the position at which DNA synthesis starts during initiation of replication at the R1 origin.  相似文献   

12.
Properties of R1162, a broad-host-range, high-copy-number plasmid.   总被引:20,自引:12,他引:8       下载免费PDF全文
R Meyer  M Hinds    M Brasch 《Journal of bacteriology》1982,150(2):552-562
Regions of plasmid DNA encoding characteristic properties of the IncQ (P-4) group plasmid R1162 were identified by mutagenesis and in vitro cloning. Coding sequences sufficient for expression of incompatibility and efficient conjugal mobilization by plasmid R751 were found to be linked to the origin of DNA replication. In contrast, there was a region remote from the origin, and active in trans, that was required for plasmid maintenance. A derivative that was temperature sensitive for stability was isolated. The defect mapped at or near the region required for plasmid maintenance and resulted in far fewer copies of supercoiled plasmid DNA per cell under permissive conditions. A second region required for stability was also identified from the behavior of a deletion derivative of R1162, which did not, however, show an altered number of supercoiled plasmid DNA copies. Finally, a plasmid DNA mutation resulting in a substantially higher copy number was isolated. Plasmid reconstruction experiments suggested that the mutation was linked to the replicative origin.  相似文献   

13.
The broad-host-range plasmid R1162 is conjugally mobilized at high frequency by the IncP-1 plasmid R751 but is poorly mobilized by pOX38, a derivative of the F factor. In both cases, the origin of transfer (oriT) and the Mob proteins of R1162 are required, indicating that these plasmids are mobilized by similar mechanisms. R1162 encodes a primase, essential for vegetative replication of the plasmid, that is made both as a separate protein and as the carboxy-terminal domain of MobA, one of the R1162 mobilization proteins (P. Scholz, V. Haring, B. Wittman-Liebold, K. Ashman, M. Bagdasarian, and E. Scherzinger, Gene 75:271-288, 1989). When R751 is the mobilizing vector, the primase is not required for mobilization of plasmids containing cloned mob-oriT R1162 DNA. However, detectable mobilization of such plasmids by pOX38 requires both the primase and its cognate initiation site, oriented for synthesis of the complement to the transferred strand. The long form of the primase is required for optimal transfer: R1162 replicons lacking this form also are not transferred detectably by pOX38 and are less well mobilized by R751. The distance between oriT and the primase initiation site affects the frequency of mobilization, and this effect is polar in the direction of transfer. Our results indicate that the R1162 primase is active in mobilization of R1162 and suggest that the MobA-linked form is an adaptation increasing its effectiveness during transfer.  相似文献   

14.
Parker C  Zhang XL  Henderson D  Becker E  Meyer R 《Plasmid》2002,48(3):7254-192
Strand-replacement synthesis during conjugative mating has been characterized by introducing into donor cells R1162 plasmid DNA containing a base-pair mismatch. Conjugative synthesis in donors occurs in the absence of vegetative plasmid replication, but with a lag between rounds of transfer, and with most strands being initiated at the normal site within the replicative origin. These characteristics argue against the idea that multiple plasmid copies are generated for successive rounds of transfer by rolling-circle replication. However, the R1162 relaxase protein can process molecules containing multiple transfer origins in the manner expected for the conversion of single-strand multimers, generated by rolling-circle replication, to unit-length molecules. This capability appears to be the result of a secondary cleavage reaction carried out by the protein. The possibility is raised that the processing of molecules with more than one origin of transfer might be a repair mechanism directed against adventitious DNA synthesis during transfer.  相似文献   

15.
In Gram-negative bacteria, the general mechanism of conjugal plasmid transfer, which is probably similar for many different groups of plasmids, involves the transfer of a single plasmid DNA strand with 5′ to 3′ polarity. Transfer is initiated by nicking of the duplex DNA at a particular site, i.e. the origin of transfer (oriT). We constructed plasmids containing two directly repeated copies of oriT, derived from the broad-host-range plasmid R1162 and flanking the lac operator. The number of lacO copies in the plasmid after transfer could be determined from the colour of transconjugant colonies on medium containing X-Gal. When the oriTs were mutated to prevent initiation and termination of transfer at the same oriTs, almost all of the transconjugant cells contained greater-than-unit-length plasmids with two copies of lacO and three copies of oriT. We show that these molecules were generated by an intramolecular, conjugation dependent mechanism unlikely to depend solely on a pre-existing population of circular or linear multimers in donor cells. We propose that the greater-than-unit-length molecules were instead generated by a rolling-circle mechanism of DNA replication.  相似文献   

16.
Summary The recombinant plasmid pRK101 contains a DNA fragment which carries the complete replication origin of the antibiotic resistance factor R1drd-19 inserted into the vector plasmid pBR322. In a spontaneously arising mutant of this plasmid (pRK 103) a deletion of about 215 base pairs (bp) has been detected by heteroduplex analysis and mapping with restriction endonucleases. Essential parts of the replication origin must be located in the deleted sequence. The deletion mutant pRK103, in contrast to its parent plasmid pRK101 is not replicated under the control of the R1 replicon, even when the R1 factor or copy mutants of it are present within the same cell. These latter plasmids can complement a plasmid-specific protein not coded by pRK101 but essential for R1-directed replication. The nucleotide sequence of a 252 bp HpaII fragment covering about 170–200 bp of the deletion was determined. This piece of DNA is rich in G and C and contains a series of small palindromes, symmetrically arranged repeated sequences and short selfcomplementary structures which may be of significance for the initiation of the DNA replication. The possibility that the sequenced DNA fragment comprises a major part of the replication origin of R1drd-19 is discussed.  相似文献   

17.
DNA involved in the mobilization of broad-host-range plasmid R1162 was localized to a region of 2.7 kilobases within coordinates 3.4 to 6.1 kilobases on the R1162 map. By examining the transfer properties of plasmids containing cloned fragments of DNA from within this region, we showed that at least four trans-active products and a cis-active site (oriT) were involved in mobilization. A cloned DNA fragment of 155 base pairs was capable of providing full oriT activity. This fragment was located within 600 base pairs of DNA containing the origin of replication of R1162, and its nucleotide sequence and that of neighboring DNA were determined. Activation of oriT required R1162-encoded, trans-acting products. Deletions which resulted in the loss of one or more of these had a variable effect on transfer efficiency and indicated the presence of both essential and nonessential Mob products. Regions encoding these products flanked oriT and in one case appeared to overlap a gene essential for plasmid replication. The implications of these findings with respect to the broad host range of R1162 are discussed.  相似文献   

18.
Minichromosomes are plasmids with the origin of chromosome replication, oriC, as their only origin of replication. In Escherichia coli, minichromosomes are compatible with the chromosome and replicate in a cell-cycle-specific manner at the same time as oriC located on the chromosome initiates replication. In int strains, oriC has been inactivated and replaced by a plasmid origin. Because plasmids control their own replication, chromosome replication is uncoupled from the normal cell-cycle control and is random with respect to the cell cycle in the int strains. We have used an intP1 strain to address the question of whether minicromosome replication is coupled to the replication of the chromosome or is governed by cell-cycle-specific signals. Minichromosome replication was analysed by density-shift experiments and found not to be random in the randomly replicating intP1 host. This suggests that the cell-cycle-specific control functions of oriC replication are operating also in the intP1 strain.  相似文献   

19.
Y J Kim  L S Lin    R J Meyer 《Journal of bacteriology》1987,169(12):5870-5872
Two domains at the replicative origin of broad-host-range plasmid R1162 are required in cis for plasmid maintenance in Escherichia coli and for plasmid DNA replication in cell extracts. Increasing the distance between the domains reduces replication in vitro, without substantially changing plasmid DNA content or stability in vivo.  相似文献   

20.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号