共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological roles of SAPK/JNK signaling pathway 总被引:10,自引:0,他引:10
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) is activated by many types of cellular stresses and extracellular signals. Recent studies, including the analysis with knockout mice, have led to progress towards understanding the physiological roles of SAPK/JNK activation in embryonic development in addition to immune responses. SAPK/JNK activation plays essential roles in organogenesis during mouse development by regulating cell survival, apoptosis, and proliferation. Two SAPK/JNK activators, SEK1 and MKK7, are required for fetal liver formation and full activation of SAPK/JNK, which responds to various stimuli in an all-or-none manner. This article focuses on physiological roles of SAPK/JNK activation in fetal liver formation and in apoptosis regulation. 相似文献
2.
Kim JW Chang TS Lee JE Huh SH Yeon SW Yang WS Joe CO Mook-Jung I Tanzi RE Kim TW Choi EJ 《The Journal of cell biology》2001,153(3):457-463
Presenilin 1 (PS1) plays a pivotal role in Notch signaling and the intracellular metabolism of the amyloid beta-protein. To understand intracellular signaling events downstream of PS1, we investigated in this study the action of PS1 on mitogen-activated protein kinase pathways. Overexpressed PS1 suppressed the stress-induced stimulation of stress-activated protein kinase (SAPK)/c-Jun NH(2)-terminal kinase (JNK) in human embryonic kidney 293 cells. Interestingly, two functionally inactive PS1 mutants, PS1(D257A) and PS1(D385A), failed to inhibit UV-stimulated SAPK/JNK. Furthermore, H(2)O(2-) or UV-stimulated SAPK activity was higher in mouse embryonic fibroblast (MEF) cells from PS1-null mice than in MEF cells from PS(+/+) mice. MEF(PS1(-/-)) cells were more sensitive to the H(2)O(2)-induced apoptosis than MEF(PS1(+/+)) cells. Ectopic expression of PS1 in MEF(PS1(-/-)) cells suppressed H(2)O(2)-stimulated SAPK/JNK activity and apoptotic cell death. Together, our data suggest that PS1 inhibits the stress-activated signaling by suppressing the SAPK/JNK pathway. 相似文献
3.
c-JunN端激酶(JNK)通路是细胞感受外界环境变化的重要途径,与细胞增殖、分化、凋亡等生命过程息息相关.活性氧(ROS)具有很高的生物学活性,可作为第二信使参与到JNK信号通之中.ROS可通过ASK1、Src激酶、GSTπ、MLK3、RIP-TRAF2复合体、MKPs等信号蛋白活化JNK,也可以充当IKK/NF-κ B、ERK等信号通路与JNK信号通路交叉时话的桥梁.另外JNK有时可出现在ROS上游,可通过促进ROS产生或聚集而发挥生物学作用.本文将对近年来ROS介导JNK信号通路网络调控的研究进展作一综述. 相似文献
4.
5.
JunD mediates survival signaling by the JNK signal transduction pathway 总被引:10,自引:0,他引:10
The c-Jun NH(2)-terminal kinase (JNK) can cause cell death by activating the mitochondrial apoptosis pathway. However, JNK is also capable of signaling cell survival. The mechanism that accounts for the dual role of JNK in apoptosis and survival signaling has not been established. Here we demonstrate that JNK-stimulated survival signaling can be mediated by JunD. The JNK/JunD pathway can collaborate with NF-kappaB to increase antiapoptotic gene expression. This observation accounts for the ability of JNK to cause either survival or apoptosis in different cellular contexts. Furthermore, these data illustrate the general principal that signal transduction pathway integration is critical for the ability of cells to mount an appropriate biological response to a specific challenge. 相似文献
6.
Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch. 相似文献
7.
Wnt and calcium signaling: beta-catenin-independent pathways 总被引:13,自引:0,他引:13
Wnt signaling is a complex pathway in which beta-catenin is typically viewed as a central mediator. However, within the past 15 years, at least three Wnt-mediated pathways have been proposed that function independent of beta-catenin. One pathway involves activation of calcium/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC). Another includes recruitment of heterotrimeric GTP-binding proteins to activate phospholipase C (PLC) and phosphodiesterase (PDE). Lastly, a pathway similar to the planar cell polarity (PCP) pathway in Drosophila has been identified that activates the Jun-N-terminal kinase (JNK) and, perhaps, small GTP-binding proteins. Calcium has been implicated as an important second messenger in all of these pathways. This review will focus on the role of calcium in Wnt signaling and, as a consequence, provide a limited overview of beta-catenin-independent Wnt signaling. 相似文献
8.
Mingxiang Yu Xianying Chen Chaoyang Lv Xilu Yi Yao Zhang Mengjuan Xue Shunmei He Guoying Zhu Hongfu Wang 《Biochemical and biophysical research communications》2014
Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases. 相似文献
9.
Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. 总被引:17,自引:0,他引:17
下载免费PDF全文

Eek-hoon Jho Tong Zhang Claire Domon Choun-Ki Joo Jean-Noel Freund Frank Costantini 《Molecular and cellular biology》2002,22(4):1172-1183
Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of beta-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by beta-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal. 相似文献
10.
A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling 总被引:12,自引:0,他引:12
More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between Drosophila planar polarization and vertebrate convergence and extension? Last, we will outline some challenges and difficulties we foresee for this exciting but still very young field. 相似文献
11.
The innate immune system uses Toll family receptors to signal for the presence of microbes and initiate host defense. Bacterial lipoproteins (BLPs), which are expressed by all bacteria, are potent activators of Toll-like receptor-2 (TLR2). Here we show that the adaptor molecule, myeloid differentiation factor 88 (MyD88), mediates both apoptosis and nuclear factor-kappaB (NF-kappaB) activation by BLP-stimulated TLR2. Inhibition of the NF-kappaB pathway downstream of MyD88 potentiates apoptosis, indicating that these two pathways bifurcate at the level of MyD88. TLR2 signals for apoptosis through MyD88 via a pathway involving Fas-associated death domain protein (FADD) and caspase 8. Moreover, MyD88 binds FADD and is sufficient to induce apoptosis. These data indicate that TLR2 is a novel 'death receptor' that engages the apoptotic machinery without a conventional cytoplasmic death domain. Through TLR2, BLP induces the synthesis of the precursor of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). Interestingly, BLP also activates caspase 1 through TLR2, resulting in proteolysis and secretion of mature IL-1beta. These results indicate that caspase activation is an innate immune response to microbial pathogens, culminating in apoptosis and cytokine production. 相似文献
12.
Robitaille K Daviau A Lachance G Couture JP Blouin R 《Cell death and differentiation》2008,15(9):1522-1531
A role for tissue transglutaminase (TG2) and its substrate dual leucine zipper-bearing kinase (DLK), an upstream component of the c-Jun N-terminal kinase (JNK) signaling pathway, has been previously suggested in the apoptotic response induced by calphostin C. In the current study, we directly tested this hypothesis by examining via pharmacological and RNA-interference approaches whether inhibition of expression or activity of TG2, DLK and JNK in mouse NIH 3T3 fibroblasts and human MDA-MB-231 breast cancer epithelial cells affects calphostin C-induced apoptosis. Our experiments with the selective JNK inhibitor SP600125 reveal that calphostin C is capable of causing JNK activation and JNK-dependent apoptosis in both cell lines. Small interfering RNA-mediated depletion of TG2 alone strongly reduces calphostin C action on JNK activity and apoptosis. Consistent with an active role for DLK in this cascade of event, cells deficient in DLK demonstrate a substantial delay of JNK activation and poly-ADP-ribose polymerase (PARP) cleavage in response to calphostin C, whereas overexpression of a recombinant DLK resistant to silencing, but sensitive to TG2-mediated oligomerization, reverses this effect. Importantly, combined depletion of TG2 and DLK further alters calphostin C effects on JNK activity, Bax translocation, caspase-3 activation, PARP cleavage and cell viability, demonstrating an obligatory role for TG2 and DLK in calphostin C-induced apoptosis. 相似文献
13.
Alimenti E Tafuri S Scibelli A D'Angelo D Manna L Pavone LM Belisario MA Staiano N 《Biochimica et biophysica acta》2004,1693(1):73-80
Disintegrins, low molecular weight RGD-containing polypeptides isolated from snake venoms, have seen use as integrin antagonists in the field of tumor biology and angiogenesis. In this study, we investigated the molecular mechanism by which the disintegrin echistatin affects cell adhesion and signaling resulting in an apoptotic response in the GD25 cell system. Wild-type GD25 cells, which lack expression of the beta(1) family of integrin, and stable transfectants expressing the A isoform of beta(1) integrin subunit were used. Nanomolar concentrations of echistatin detached fibronectin- and vitronectin-adherent GD25 cells from immobilized substratum. However, prior to inducing detachment of adherent cells, echistatin caused apoptosis as measured by caspase-3 activation. Either cell detachment or apoptotic response induced by echistatin were more pronounced on fibronectin-adherent GD25 cells than on vitronectin-adherent ones. GD25 cell exposure to echistatin caused a reduction of tyrosine phosphorylation levels of pp125(FAK), whereas it didn't affect either Shc tyrosine phosphorylation levels or Shc-Grb2 functional association. The down-regulation of pp125(FAK) preceded apoptosis and cell detachment induced by echistatin. Our results indicate that pp125(FAK) and not Shc pathway is involved in echistatin-induced apoptotic response in the GD25 cell system. 相似文献
14.
15.
Böhm J Sustmann C Wilhelm C Kohlhase J 《Biochemical and biophysical research communications》2006,348(3):898-907
The SALL4 promoter has not yet been characterized. Animal studies showed that SALL4 is downstream of and interacts with TBX5 during limb and heart development, but a direct regulation of SALL4 by TBX5 has not been demonstrated. For other SAL genes, regulation within the Shh, Wnt, and Fgf pathways has been reported. Chicken csal1 expression can be activated by a combination of Fgf4 and Wnt3a or Wnt7a. Murine Sall1 enhances, but Xenopus Xsal2 represses, the canonical Wnt signaling. Here we describe the cloning and functional analysis of the SALL4 promoter. Within a minimal promoter region of 31bp, we identified a consensus TCF/LEF-binding site.The SALL4 promoter was strongly activated not only by LEF1 but also by TCF4E. Mutation of the TCF/LEF-binding site resulted in decreased promoter activation. Our results demonstrate for the first time the direct regulation of a SALL gene by the canonical Wnt signaling pathway. 相似文献
16.
c-Jun N-terminal kinase (JNK) contributes to metalloproteinase (MMP) gene expression and joint destruction in inflammatory
arthritis. It is phosphorylated by at least two upstream kinases, the mitogen-activated protein kinase kinases (MEK) MKK4
and MKK7, which are, in turn, phosphorylated by MEK kinases (MEKKs). However, the MEKKs that are most relevant to JNK activation
in synoviocytes have not been determined. These studies were designed to assess the hierarchy of upstream MEKKs, MEKK1, MEKK2,
MEKK3, and transforming growth factor-β activated kinase (TAK)1, in rheumatoid arthritis (RA). Using either small interfering
RNA (siRNA) knockdown or knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2, or MEKK3 deficiency (either alone or
in combination) had no effect on IL-1β-stimulated phospho-JNK (P-JNK) induction or MMP expression. However, TAK1 deficiency
significantly decreased P-JNK, P-MKK4 and P-MKK7 induction compared with scrambled control. TAK1 knockdown did not affect
p38 activation. Kinase assays showed that TAK1 siRNA significantly suppressed JNK kinase function. In addition, MKK4 and MKK7
kinase activity were significantly decreased in TAK1 deficient FLSs. Electrophoretic mobility shift assays demonstrated a
significant decrease in IL-1β induced AP-1 activation due to TAK1 knockdown. Quantitative PCR showed that TAK1 deficiency
significantly decreased IL-1β-induced MMP3 gene expression and IL-6 protein expression. These results show that TAK1 is a
critical pathway for IL-1β-induced activation of JNK and JNK-regulated gene expression in FLSs. In contrast to other cell
lineages, MEKK1, MEKK2, and MEKK3 did not contribute to JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal upstream
kinase and potential therapeutic target to modulate synoviocyte activation in RA. 相似文献
17.
Qi SH Zhao H Gong JJ Sun FM Yue J Guan QH Wang M 《Journal of receptor and signal transduction research》2011,31(6):402-407
In this study, we investigated the neuroprotective effects of paclitaxel in transient cerebral ischemia and possible regulatory mechanism of these neuroprotection. Our data showed that paclitaxel can down-regulate the increased MLK3, JNK3, c-Jun, Bcl-2, and caspase-3 phosphorylation induced by ischemia injury. Cresyl violet staining and immunohistochemistry results demonstrated that paclitaxel had neuroprotective effect against ischemia/reperfusion-induced neuronal cell death. These results indicated that paclitaxel has neuroprotection in ischemic injury through JNK3 signaling pathway and provided a novel possible drug in therapeutics of brain ischemia. 相似文献
18.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation. 相似文献
19.
《Journal of receptor and signal transduction research》2013,33(6):402-407
In this study, we investigated the neuroprotective effects of paclitaxel in transient cerebral ischemia and possible regulatory mechanism of these neuroprotection. Our data showed that paclitaxel can down-regulate the increased MLK3, JNK3, c-Jun, Bcl-2, and caspase-3 phosphorylation induced by ischemia injury. Cresyl violet staining and immunohistochemistry results demonstrated that paclitaxel had neuroprotective effect against ischemia/reperfusion-induced neuronal cell death. These results indicated that paclitaxel has neuroprotection in ischemic injury through JNK3 signaling pathway and provided a novel possible drug in therapeutics of brain ischemia. 相似文献