首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.  相似文献   

2.
Activated macrophages release cytokines and growth factors that may contribute to the growth of vascular smooth muscle cells in injured blood vessels. In the present study, we investigated the interactions between interleukin-1b? (IL-1b?) and basic fibroblast growth factor (FGF-2) in primary rat aortic smooth muscle cells, relative to their effects on DNA synthesis and cell proliferation. We report that femtomolar levels of IL-1b?, which alone were non-mitogenic or weakly mitogenic, synergistically increased FGF-2-induced [3H]thymidine incorporation and cell proliferation. The potentiating effect of IL-1b? extended to PDGF-AB and EGF, but not to IGF-1-induced thymidine incorporation. An antagonist of the IL-1 receptor, IL-1ra, blocked the co-mitogenic effect of IL-1b?. Stimulation of cells with FGF-2 and IL-1b? increased both DNA content and proliferation, an observation that was consistent with the thymidine incorporation experiments. An inhibitor of NO synthase, N5-iminoethyl L-ornithine (L-NIO), did not block the co-mitogenic effect of IL-1b?, despite effective inhibition of NO synthase activity, suggesting that the synergistic interaction between IL-1b? and FGF-2 was independent of the NO/cGMP pathway. The mechanism of co-mitogenesis appeared to be independent of the intermediacy of PDGF-AA, IL-6, and prostanoids, and was not associated with increased levels of c-fos mRNA, FGF receptor-1 protein, or FGF-2-induced early and delayed tyrosine phosphorylation events. We conclude that IL-1b? interacts with FGF-2 to amplify the proliferation of primary rat aortic smooth muscle cells, an effect that may be important in vascular smooth muscle cell proliferation following vascular injury. © 1995 Wiley-Liss, Inc.  相似文献   

3.
4.
We studied the effects of FGF-13 and FGF-2 on human lung fibroblasts, dermal microvascular endothelial cells, and aortic smooth muscle cells. FGF-13 induced cell growth of lung fibroblasts and aortic smooth muscle cells but had no effect on dermal vascular endothelial cells. FGF-2 induced cell growth in all the three cell types. FGF-13 and FGF-2 had little effect on IL-6 production by lung fibroblasts and aortic smooth muscle cells and substantially enhanced that induced by IL-1α. In contrast, FGF-13 and FGF-2 had little effect on IL-6 production by dermal vascular endothelial cells, either alone or in synergy with IL-1α.  相似文献   

5.
6.
Vascular endothelial growth factor (VEGF) and basic (b) fibroblast growth factor (FGF-2/bFGF) are involved in vascular development and angiogenesis. Pulmonary artery smooth muscle cells express VEGF and FGF-2 and are subjected to mechanical forces during pulsatile blood flow. The effect of stretch on growth factor expression in these cells is not well characterized. We investigated the effect of cyclic stretch on the expression of VEGF and FGF-2 in ovine pulmonary artery smooth muscle cells. Primary confluent cells from 6-wk-old lambs were cultured on flexible silicon membranes and subjected to cyclic biaxial stretch (1 Hz; 5-25% stretch; 4-48 h). Nonstretched cells served as controls. Expression of VEGF and FGF-2 was determined by Northern blot analysis. Cyclic stretch induced expression of both VEGF and FGF-2 mRNA in a time- and amplitude-dependent manner. Maximum expression was found at 24 h and 15% stretch (VEGF: 1.8-fold; FGF-2: 1.9-fold). These results demonstrate that mechanical stretch regulates VEGF and FGF-2 gene expression, which could play a role in pulmonary vascular development or in postnatal pulmonary artery function or disease.  相似文献   

7.
gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.  相似文献   

8.
9.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   

10.
11.
12.
A novel recombinant basic fibroblast growth factor and its secretion.   总被引:7,自引:0,他引:7  
Basic fibroblast growth factor (FGF-2) is a pleiotropic mitogen which plays an important role in cell growth, differentiation, migration, and survival in different cells and organ systems. Recently, several clinical applications for FGF-2 gene transfer are being evaluated in wound healing and collateral artery development to relieve myocardial and peripheral ischemia due to the ability of FGF-2 to regulate the growth and function of vascular cells. However, FGF-2 lacks a classical hydrophobic secretion signal peptide, the FGF-2 chimeras containing various signal sequences have been explored. In this study, a novel recombinant 4sFGF-2 was constructed by replacing nine residues from the amino-terminus of native FGF-2 (Met1 to Leu9) with eight amino acid residues of signal peptide of FGF-4 (Met1 to Ala8) to better increase the secretion level of FGF-2. When the recombinant FGF-2 gene, cloned into the expression vector with CMV promoter, was expressed in COS-7 cells, the recombinant 4sFGF-2 was highly secreted into the media. The secreted 4sFGF-2 showed the same biological activity as the native FGF-2 in the dose-response effects on DNA synthesis and cell growth of rat aortic smooth muscle cells (RASMCs) and NIH3T3 cells. The 4sFGF-2 also was able to activate MAPK as wild FGF-2 in RASMCs. These results indicate that a novel recombinant 4sFGF-2 may be useful as clinical applicability of angiogenic growth factor gene transfer.  相似文献   

13.
Plasma membrane protrusion is fundamental to cell motility, but its regulation by the extracellular environment is not well elucidated. We have quantified lamellipodial protrusion dynamics in human vascular smooth muscle cells exposed to fibroblast growth factor 2 (FGF-2) and type I collagen, two distinct ligands presented to vascular cells during arterial remodeling. Video microscopy revealed that FGF-2 stimulated a modest increase in lamellipodial protrusion rate that peaked within 15 min. This response was associated with immediate but transient activation of Rac1 and was inhibited in cells infected with retrovirus containing cDNA encoding dominant-negative Rac1. A 1-h exposure to FGF-2 also set up a second phase of more striking lamellipodial protrusion evident at 24-36 h. This delayed response was most pronounced when cells were on type 1 collagen and was associated with FGF-2-induced expression of collagenase-1 that localized to the edge of protruding lamellipodia. Moreover, late membrane protrusion was inhibited when cells were on collagenase-resistant type I collagen, implicating degraded collagen as a mediator. For cells on collagen, the immediate activation of Rac1 by FGF-2 was followed by a sustained wave of Rac1 activation that was inhibited when cleavage of the collagen triple helix was prevented and also by blockade of alpha(v)beta(3) integrin. We conclude that lamellipodial protrusion in smooth muscle cells can be regulated by waves of Rac1 activation, corresponding to the sequential presentation of FGF-2 and remodeled collagen. The findings thus reveal a previously unrecognized level of coordination among extracellular input that enables cells to maintain protrusive activity over prolonged periods.  相似文献   

14.
15.
Smooth muscle cell migration and proliferation contribute to neointimal hyperplasia and vascular stenosis after endothelial denudation. Previous studies revealed that apolipoprotein E (apoE) is an effective inhibitor of platelet-derived growth factor-directed smooth muscle cell migration and proliferation and that the anti-migratory function is mediated via apoE binding to low density lipoprotein receptor-related protein-1 (LRP-1). This study was undertaken to identify the intracellular pathway by which apoE binding to LRP-1 results in inhibition of smooth muscle cell migration. The results showed that apoE increased intracellular cAMP levels 3-fold after 5 min, and the increase was sustained for more than 1 h. As a consequence, apoE also increased protein kinase A (PKA) activity in smooth muscle cells. Importantly, suppression of PKA activity with a cell-permeable peptide inhibitor of PKA abolished the inhibitory effect of apoE on smooth muscle cell migration. These results indicated that apoE inhibition of smooth muscle cell migration is mediated via the activation of cAMP-dependent PKA. Additional experiments revealed that apoE also inhibited fibroblasts migration toward platelet-derived growth factor by a similar mechanism of cAMP-dependent PKA activation. It is noteworthy that apoE failed to increase cAMP levels or inhibit migration of LRP-1-negative mouse embryonic fibroblasts and LRP-1-deficient smooth muscle cells. Taken together, these findings established the mechanism by which apoE inhibits cell migration, i.e. via cAMP-dependent protein kinase A activation as a consequence of its binding to LRP-1.  相似文献   

16.
We examined the possible cooperation between norepinephrine (NE) and ANG II on proliferation of cultured vascular smooth muscle cells (VSMCs) and the involved cellular mechanisms. Nanomolar NE concentrations stimulated VSMC proliferation through a prazosin-sensitive effect. The pretreatment of cells with 100 nM ANG II for 24 h significantly potentiated the NE-induced VSMC proliferation; this potentiating effect of ANG II was blocked by losartan but was unaffected by the AT(2) receptor antagonist PD-123177. ANG II pretreatment also potentiated the increase in inositol phosphate turnover and upregulated the cell expression of fibroblast growth factor (FGF-2) induced by NE. Anti-FGF-2 neutralizing antibodies prevented the potentiating effect of ANG II on NE-induced cell growth. Both ANG II and NE stimulated extracellular signal-related kinase (ERK1) activation, but an ANG II potentiation of the effect of NE on ERK1 activity was not detectable. Moreover, ANG II significantly increased protein synthesis but did not potentiate the hypertrophic effect of NE. These findings demonstrate that ANG II and NE cooperate in promoting VSMC growth and that FGF-2 upregulation is involved in this effect.  相似文献   

17.
In response to vascular injury, smooth muscle cells migrate from the media into the intima, where they contribute to the development of neointimal lesions. Increased matrix metalloproteinase (MMP) expression contributes to the migratory response of smooth muscle cells by releasing them from their surrounding extracellular matrix. MMPs may also participate in the remodeling of extracellular matrix in vascular lesions that could lead to plaque weakening and subsequent rupture. Neurotrophins and their receptors, the Trk family of receptor tyrosine kinases, are expressed in neointimal lesions, where they induce smooth muscle cell migration. We now report that nerve growth factor (NGF)-induced activation of the TrkA receptor tyrosine kinase induces MMP-9 expression in both primary cultured rat aortic smooth muscle cells and in a smooth muscle cell line genetically manipulated to express TrkA. The response to NGF was specific for MMP-9 expression, as the expression of MMP-2, MMP-3, or the tissue inhibitor of metalloproteinase-2 was not changed. Activation of the Shc/mitogen-activated protein kinase pathway mediates the induction of MMP-9 in response to NGF, as this response is abrogated in cells expressing a mutant TrkA receptor that does not bind Shc and by pretreatment of cells with the MEK-1 inhibitor, U0126. Thus, these results indicate that the neurotrophin/Trk receptor system, by virtue of its potent chemotactic activity for smooth muscle cells and its ability to induce MMP-9 expression, is a critical mediator in the remodeling that occurs in the vascular wall in response to injury.  相似文献   

18.
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.  相似文献   

19.
The growth factor signaling mechanisms responsible for neointimal smooth muscle cell (SMC) proliferation and accumulation, a characteristic feature of many vascular pathologies that can lead to restenosis after angioplasty, remain to be identified. Here, we examined the contribution of fibroblast growth factor receptors (FGFRs) 2 and 3 as well as novel fibroblast growth factors (FGFs) to such proliferation. Balloon catheter injury to the rat carotid artery stimulated the expression of two distinctly spliced FGFR-2 isoforms, differing only by the presence or absence of the acidic box, and two distinctly spliced FGFR-3 isoforms containing the acidic box and differing only by the presence of either the IIIb or IIIc exon. Post-injury arterial administration of recombinant adenoviruses expressing dominant negative mutant forms of these FGFRs were used to assess the roles of the endogenous FGFR isoforms in neointimal SMC proliferation. Dominant negative FGFR-2 containing the acidic box inhibited such proliferation by 40%, whereas the dominant negative FGFR-3 forms had little effect. Expression of FGF-9, known to be capable of binding to all four neointimal FGFR-2/-3 isoforms, was abundant within the neointima. FGF-9 markedly stimulated both the proliferation of neointimal SMCs and the activation of extracellular signal-related kinases 1/2, effects which were abrogated by the administration of antisense FGF-9 oligonucleotides to injured arteries and the expression of the dominant negative FGFR-2 adenovirus in cultured neointimal SMCs. These studies demonstrate that, although multiple FGFRs are induced in neointimal SMCs following arterial injury, specific interactions between distinctly spliced FGFR-2 isoforms and FGF-9 contribute to the proliferation of these SMCs.  相似文献   

20.
A mitogen for growth-arrested cultured bovine aortic smooth muscle cells was purified to homogeneity from the supernatant of cultured human umbilical vein endothelial cells by heparin affinity chromatography and reverse-phase high performance liquid chromatography. This mitogen was revealed to be tissue factor pathway inhibitor-2 (TFPI-2), which is a Kunitz-type serine protease inhibitor. TFPI-2 was expressed in baby hamster kidney cells using a mammalian expression vector. Recombinant TFPI-2 (rTFPI-2) stimulated DNA synthesis and cell proliferation in a dose-dependent manner (1-500 nM). rTFPI-2 activated mitogen-activated protein kinase (MAPK) activity and stimulated early proto-oncogene c-fos mRNA expression in smooth muscle cells. MAPK, c-fos expression and the mitogenic activity were inhibited by a specific inhibitor of MAPK kinase, PD098059. Thus, the mitogenic function of rTFPI-2 is considered to be mediated through MAPK pathway. TFPI has been reported to exhibit antiproliferative action after vascular smooth muscle injury in addition to the ability to inhibit activation of the extrinsic coagulation cascade. However, structurally similar TFPI-2 was found to have a mitogenic activity for the smooth muscle cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号