首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endo Y  Zhang M  Yamaji S  Cang Y 《PloS one》2012,7(2):e31846
Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.  相似文献   

2.
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16(INK4a).Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16(INK4a) in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16(INK4a) leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.  相似文献   

3.
Stromal derived factor-1 alpha (SDF-1alpha) and its receptor CXCR4 have been shown to play a role in the systematic movement of hematopoietic stem cells (HSC) in the fetal and adult stages of hematopoiesis. Under certain physiological conditions liver oval cells can participate in the regeneration of the liver. We have shown that a percentage of oval cells are of hematopoietic origin. Others have shown that bone marrow derived stem cells can participate in liver regeneration as well. In this study we examined the role of SDF-1alpha and its receptor CXCR4 as a possible mechanism for oval cell activation in oval cell aided liver regeneration. In massive liver injury models where oval cell repair is involved hepatocytes up-regulate the expression of SDF-1alpha, a potent chemoattractant for hematopoietic cells. However, when moderate liver injury occurs, proliferation of resident hepatocytes repairs the injury. Under these conditions SDF-1alpha expression is not up-regulated and oval cells are not activated in the liver. In addition, we show that oval cells express CXCR4, the only known receptor for SDF-1alpha. Lastly, in vitro chemotaxis assays demonstrated that oval cells migrate along a SDF-1alpha gradient which suggests that the SDF-1alpha/CXCR4 interaction is a mechanism by which the oval cell compartment could be activated and possibly recruit a second wave of bone marrow stem cells to the injured liver. In conclusion, these experiments begin to shed light on a possible mechanism, which may someday lead to a better understanding of the hepatic and hematopoietic interaction in oval cell aided liver regeneration.  相似文献   

4.
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra‐hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self‐repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio‐artificial liver‐assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The liver is a unique organ with the potential to regenerate from injury. Hepatic stem cells contribute to liver regeneration when surviving hepatocytes in injured liver are unable to proliferate. To investigate the mechanism of liver regeneration in vitro, we established hepatic stem cell lines named HY1, HY2 and HY3, derived from a healthy liver of adult rat. HY cells showed an expression pattern similar to oval cells, and efficiently induced hepatic differentiation following sequential treatment with type I collagen, transforming growth factor-beta1 (TGF-beta1), and hepatocyte growth factor (HGF) or oncostatin M (OSM). These results suggested that HY cells are liver stem cells representing an excellent tool for in vitro studies on liver regeneration.  相似文献   

6.
The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by the rapid division of mature cells. Proliferation of the parenchymal cells, i.e. hepatocytes and epithelial cells of the bile duct, is regulated by numerous cytokine/growth-factor-mediated pathways and is synchronised with extracellular matrix degradation and restoration of the vasculature. Resident hepatic stem/progenitor cells have also been identified in small numbers in normal liver and implicated in liver tissue repair. Their putative role in the physiology, pathophysiology and therapy of the liver, however, is not yet precisely known. Hepatic stem/progenitor cells also known as “oval cells” in rodents have been implicated in liver tissue repair, at a time when the capacity for hepatocyte and bile duct replication is exhausted or experimentally inhibited (facultative stem/progenitor cell pool). Although much more has to be learned about the role of stem/progenitor cells in the physiology and pathophysiology of the liver, experimental analysis of the therapeutic value of these cells has been initiated. Transplantation of hepatic stem/progenitor cells or in vivo pharmacological activation of the pool of hepatic stem cells may provide novel modalities for the therapy of liver diseases. In addition, extrahepatic stem cells (e.g. bone marrow cells) are being investigated for their contribution to liver regeneration. Hepatic progenitor cells derived from embryonic stem cells are included in this review, which also discusses future perspectives of stem cell-based therapies for liver diseases.  相似文献   

7.
Stem cells, cell transplantation and liver repopulation   总被引:3,自引:0,他引:3  
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.  相似文献   

8.
Hepatic stellate cells (HSCs) are important part of the local 'stem cell niche' for hepatic progenitor cells (HPCs) and hepatocytes. However, it is unclear as to whether the products of activated HSCs are required to attenuate hepatocyte injury, enhance liver regeneration, or both. In this study, we performed 'loss of function' studies by depleting activated HSCs with gliotoxin. It was demonstrated that a significantly severe liver damage and declined survival rate were correlated with depletion of activated HSCs. Furthermore, diminishing HSC activation resulted in a 3-fold increase in hepatocyte apoptosis and a 66% decrease in the number of proliferating hepatocytes. This was accompanied by a dramatic decrease in the expression levels of five genes known to be up-regulated during hepatocyte replication. In particular, it was found that depletion of activated HSCs inhibited oval cell reaction that was confirmed by decreased numbers of Pank-positive cells around the portal tracts and lowered gene expression level of cytokeratin 19 (CK19) in gliotoxin-treated liver. These data provide clear evidence that the activated HSCs are involved in both hepatocyte death and proliferation of hepatocytes and HPCs in acetaminophen (APAP)-induced acute liver injury.  相似文献   

9.
Hepatic stem cell niche plays an important role in hepatic oval cell-mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2-acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen-activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9?days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal-regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15?days group) contained high levels of transforming growth factor (TGF)-β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF-β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell-mediated liver regeneration. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Oval cells are facultative liver progenitor cells, which are invoked during chronic liver injury in order to replenish damaged hepatocytes and bile duct cells. Previous studies have observed inflammation and cytokine production in the liver during chronic injury. Further, it has been proposed that inflammatory growth factors may mediate the proliferation of oval cells during disease progression. We have undertaken a detailed examination of inflammation and cytokine production during a time course of liver injury and repair, invoked by feeding mice a choline-deficient, ethionine-supplemented (CDE) diet. We show that immediately following initial liver injury, B220-expressing leucocytes transiently infiltrate the liver. This inflammatory response occurred immediately before oval cell numbers began to expand in the liver, suggesting that the two events may be linked. Two waves of liver cytokine production were observed during the CDE time course. The first occurred shortly following commencement of the diet, suggesting that it may represent a hepatic acute phase response. However, examination of acute phase marker expression in CDE-fed mice did not support this hypothesis. The second wave of cytokine expression correlated with the expansion of oval cell numbers in the liver, suggesting that these factors may mediate oval cell proliferation. No inflammatory signalling was detected following withdrawal of the injury stimulus. In summary, our results document a close correlation between inflammation, cytokine production and the expansion of oval cells in the liver during experimental chronic injury.  相似文献   

11.
Hepatic stem cell niche plays an important role in hepatic oval cell‐mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2‐acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen‐activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9 days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal‐regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15 days group) contained high levels of transforming growth factor (TGF)‐β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF‐β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell‐mediated liver regeneration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Hepatic stem cells are an alternative means for repopulating the liver after various injuries instead of liver transplantation. The first step before use is to select stem cells that will be good candidates. This review discusses the different candidates including fetal progenitor bipotential hepatic stem cells; adult hepatocytes, which can be considered as unipotential committed stem cells; and oval cells, a type of nonparenchymal pluripotential hepatic stem cell. The advantages and disadvantages of each type of cell are discussed and several other possible alternatives, such as the use of hematopoietic stem cells are analyzed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Oval cells are hypothesized to be the progeny of intrahepatic stem cells, also referred to as adult liver stem cells. The mechanisms by which these cells are activated to proliferate and differentiate during liver regeneration is important for the development of new therapies to treat liver disease. Oval cell activation is the first step in progenitor-dependent liver regeneration in response to certain types of injury. This review describes what is currently known about the factors involved in oval cell activation, proliferation, migration, and differentiation.  相似文献   

14.
The role of hepatocytes and oval cells in liver regeneration and repopulation   总被引:44,自引:0,他引:44  
The liver has the unique capacity to regulate its growth and mass. In rodents and humans, it grows rapidly after resection of more than 50% of its mass. This growth process, as well as that following acute chemical injury is known as liver regeneration, although growth takes place by compensatory hyperplasia rather than true regeneration. In addition to hepatocytes and non-parenchymal cells, the liver contains intra-hepatic "stem" cells which can generate a transit compartment of precursors named oval cells. Liver regeneration after partial hepatectomy does not involve intra or extra-hepatic (hemopoietic) stem cells but depends on the proliferation of hepatocytes. Transplantation and repopulation experiments have demonstrated that hepatocytes, which are highly differentiated and long-lived cells, have a remarkable capacity for multiple rounds of replication. In this article, we review some aspects of the regulation of hepatocyte proliferation as well as the interrelationships between hepatocytes and oval cells in different liver growth processes. We conclude that in the liver, normally quiescent differentiated cells replicate rapidly after tissue resection, while intra-hepatic precursor cells (oval cells) proliferate and generate lineage only in situations in which hepatocyte proliferation is blocked or delayed. Although bone marrow stem cells can generate oval cells and hepatocytes, transdifferentiation is very rare and inefficient.  相似文献   

15.
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end‐stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end‐stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra‐hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra‐hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. J. Cell. Physiol. 228: 298–305, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.  相似文献   

17.
Liver stem cells give rise to both hepatocytes and bile duct epithelial cells also known as cholangiocytes. During liver development hepatoblasts emerge from the foregut endoderm and give rise to both cell types. Colony-forming cells are present in the liver primordium and clonally expanded cells differentiate into either hepatocytes or cholangiocytes depending on culture conditions, showing stem cell characteristics. The growth and differentiation of hepatoblasts are regulated by various extrinsic signals. For example, periportal mesenchymal cells provide a cue for bipotential hepatoblasts to become cholangiocytes, and mesothelial cells covering the parenchyma support the expansion of foetal hepatocytes by producing growth factors. The adult liver has an extraordinary capacity to regenerate, and after 70% hepatectomy the liver recovers its original mass by replication of the remaining hepatocytes without the activation of liver stem cells. However, in certain types of liver injury models, liver stem/progenitor-like cells, known as oval cells in rodents, proliferate around the portal vein, while the roles of such cells in liver regeneration remain a matter of debate. Clonogenic and bipotential cells are also present in the normal adult liver. In this minireview we describe recent studies on liver stem/progenitor cells by focusing on extracellular signals.  相似文献   

18.
In case of hepatic damage, the liver uses a unique regeneration mechanism through proliferation of hepatocytes. If this process is inhibited, bipotent oval stem cells proliferate and differentiate to hepatocytes and bile ducts, thus restoring liver mass. Although oval cell accumulation in the liver is often associated with inflammatory processes, the role of lymphocytes in oval cell-mediated hepatic regeneration is poorly understood. We treated wild-type and immunodeficient mice with an oval cell-inducing diet: in the absence of T cells (CD3epsilon(-/-) and Rag2(-/-)) there were fewer oval cells, whereas in alymphoid mice (Rag2(-/-)gamma(c)(-/-)) a strongly reduced oval cell response and higher mortality, due to liver failure, was observed. Adoptive transfer of T cells into alymphoid mice protected them from liver failure, but was insufficient to restore the oval cell response. Treatment of Rag2(-/-) mice with an NK cell-depleting Ab resulted in a significantly diminished oval cell response. These genetic experiments point to a major role for NK and T cells in oval cell expansion. In wild-type mice, oval cell proliferation is accompanied by an intrahepatic inflammatory response, characterized by the recruitment of Kupffer, NK, NKT, and T cells. Under these conditions, lymphocytes produce T(H)1 proinflammatory cytokines (IFN-gamma and TNF-alpha) that are mitogenic for oval cells. Our data suggest that T and NK lymphocytes stimulate oval cell expansion by local cytokine secretion. This beneficial cross-talk between the immune system and liver stem cells operates under noninfectious conditions and could promote tissue regeneration following acute liver damage.  相似文献   

19.
The 2-acetaminofluorene/partial hepatectomy (AAF/Phx) model is widely used to induce oval/progenitor cell proliferation in the rat liver. We have used this model to study the impact of a primary hepatocyte mitogen, triiodothyronine (T3) on the liver regenerating by the recruitment of oval/progenitor cells. Administration of T3 transiently accelerates the proliferation of the oval cells, which is followed by rapid differentiation into small hepatocytes. The oval cell origin of the small hepatocytes has been proven by tracing retrovirally transduced and BrdU marked oval cells. The differentiating oval cells become positive for hepatocyte nuclear factor-4 and start to express hepatocyte specific connexin 32, α1 integrin, Prox1, cytochrom P450s, and form CD 26 positive bile canaliculi. At the same time oval cell specific OV-6 and alpha-fetoprotein expression is lost. The upregulation of hepatocyte specific mRNAs: albumin, tyrosine aminotransferase and tryptophan 2,3-dioxygenase detected by real-time PCR also proves hepatocytic maturation. The hepatocytic conversion of oval cells occurs on the seventh day after the Phx in this model while the first small hepatocytes appear 5 days later without T3 treatment. The administration of the primary hepatocyte mitogen T3 accelerates the differentiation of hepatic progenitor cells into hepatocytes in vivo, and that may have therapeutic potential. Supported by OTKA T 42674 and ETT 32/2006.  相似文献   

20.
如果肝脏严重受损致使肝细胞大部分坏死,或由于某些原因 ( 肝毒性物质、致癌物质的作用 ) 抑制残存肝细胞增殖时,肝内前体/干细胞———肝卵圆细胞便被激活并分化生成肝细胞和胆管细胞等以参与肝修复 . 基于此理论,人们建立了啮齿类动物肝卵圆细胞诱导实验模型 . 但显然上述模型不适用于人类,所以有必要开发一种适用于人类的、高效的肝卵圆细胞的新诱导模型 . 选用小鼠胚胎干细胞,转成拟胚体分化 3 天后分组,诱导组添加肝细胞生长因子 (HGF) 、表皮生长因子 (EGF) 作定向诱导分化 . 其间用免疫细胞化学 (ICC) 检测肝卵圆细胞标志物 A6 等的表达,用流式细胞仪筛选肝卵圆细胞并行 RT-PCR 、透射电镜检测 . 所筛选的肝卵圆细胞进一步体外培养并进行 ICC 和 RT-PCR ,检测其分化生成成熟的肝细胞和胆管细胞的能力 . 研究证实胚胎干细胞体外定向诱导生成肝实质细胞的过程中,存在着有双向分化能力的肝卵圆细胞这个中间分化阶段 . 诱导组肝卵圆细胞分化率均显著地高于对照组,最高时可达 6.11% 左右 . HGF 和 EGF 能显著性诱导胚胎干细胞源性卵圆细胞的生成 . 流式细胞仪筛选 Sca-1+/CD34+ 细胞占总细胞数的 4.59% ,其中 A6 阳性肝卵圆细胞占 90.81% 左右 . 使用流式细胞仪可获得高富集的 A6+/Sca-1+/CD34+ 肝卵圆细胞 . 提供了一种可适用于人类的肝卵圆细胞的新诱导模型 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号