首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid beta (Abeta) is a main component of senile plaques in Alzheimer's disease and induces neuronal cell death. Reactive oxygen species (ROS), nitric oxide and endoplasmic reticulum (ER) stress have been implicated in Abeta-induced neurotoxicity. We have reported that apoptosis signal-regulating kinase 1 (ASK1) is required for ROS- and ER stress-induced JNK activation and apoptosis. Here we show the involvement of ASK1 in Abeta-induced neuronal cell death. Abeta activated ASK1 mainly through production of ROS but not through ER stress in cultured neuronal cells. Importantly, ASK1-/- neurons were defective in Abeta-induced JNK activation and cell death. These results indicate that ROS-mediated ASK1 activation is a key mechanism for Abeta-induced neurotoxicity, which plays a central role in Alzheimer's disease.  相似文献   

2.
3.
Mediators of endoplasmic reticulum stress-induced apoptosis   总被引:14,自引:0,他引:14       下载免费PDF全文
The efficient functioning of the endoplasmic reticulum (ER) is essential for most cellular activities and survival. Conditions that interfere with ER function lead to the accumulation and aggregation of unfolded proteins. ER transmembrane receptors detect the onset of ER stress and initiate the unfolded protein response (UPR) to restore normal ER function. If the stress is prolonged, or the adaptive response fails, apoptotic cell death ensues. Many studies have focused on how this failure initiates apoptosis, as ER stress-induced apoptosis is implicated in the pathophysiology of several neurodegenerative and cardiovascular diseases. In this review, we examine the role of the molecules that are activated during the UPR in order to identify the molecular switch from the adaptive phase to apoptosis. We discuss how the activation of these molecules leads to the commitment of death and the mechanisms that are responsible for the final demise of the cell.  相似文献   

4.
5.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. To restore ER homeostasis, cells possess a highly specific ER quality-control system called the unfold protein response (UPR). In the case of prolonged ER stress or UPR malfunction, apoptosis signalling is activated. This ER stress-induced apoptosis has been implicated in the pathogenesis of several conformational diseases. CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ER stress and mediates apoptosis. Recent studies by the Gotoh group have shown that the CHOP pathway is also involved in ER stress-induced cytokine production in macrophages. The multifunctional roles of CHOP in the ER stress response are discussed below.  相似文献   

6.
7.
8.
Roles of MAPKKK ASK1 in stress-induced cell death   总被引:10,自引:0,他引:10  
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein (MAP) kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase signaling cascades. Recent findings from analyses of ASK1-deficient mice have revealed that ASK1 is required for apoptosis induced by oxidative stress, TNF and endoplasmic reticulum (ER) stress. In addition, several lines of evidence have suggested that ASK1 has diverse functions in the decision of cell fate beyond its pro-apoptotic activity. Thus, ASK1 appears to be a pivotal component not only in stress-induced cell death but also in a broad range of biological activities in order for cells to adapt to or oppose various stresses.  相似文献   

9.
The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. ER stress–associated neuronal cell death pathways play roles in the pathogenesis of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s disease. Neuropeptide Y (NPY) has an important role in neuroprotection against neurodegenerative diseases. In this study, we investigated whether NPY has a protective role in ER stress–induced neuronal cell death in SK-N-SH human neuroblastoma cells. An ER stress–inducing chemical, tunicamycin, increased the activities of caspase-3 and -4, whereas pretreatment with NPY decreased caspase-3 and -4 activities during the ER stress response. In addition, NPY suppressed the activation of three major ER stress sensors during the tunicamycin-induced ER stress response. NPY-mediated activation of PI3K increased nuclear translocation of XBP1s, which in turn induced expression of Grp78/BiP. Taken together, our data indicated that NPY plays a protective role in ER stress–induced neuronal cell death through activation of the PI3K–XBP1 pathway, and that NPY signaling can serve as therapeutic target for ER stress–mediated neurodegenerative diseases.  相似文献   

10.
The endoplasmic reticulum (ER) is a subcellular organelle that ensures proper protein folding process. The ER stress is defined as cellular conditions that disturb the ER homeostasis, resulting in accumulation of unfolded and/or misfolded proteins in the lumen of the ER. The presence of these proteins within the ER activates the ER stress response, known as unfolded protein response (UPR), to restore normal functions of the ER. However, under the severe and/or prolonged ER stress, UPR initiates apoptotic cell death. Psychostimulants such as cocaine, amphetamine, and methamphetamine cause the ER stress and/or apoptotic cell death in regions of the brain related to drug addiction. Recent studies have shown that the ER stress in response to psychostimulants is linked to behavioral sensitization and that the psychostimulant-induced ER stress signaling cascades are closely associated with the pathogenesis of the neurodegenerative diseases. Therefore, this review was conducted to improve understanding of the functional role of the ER stress in the addiction as well as neurodegenerative diseases. This would be helpful to facilitate development of new therapeutic strategies for the drug addiction and/or neurodegenerative diseases caused or exacerbated by exposure to psychostimulants.  相似文献   

11.
12.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

13.
Recent papers have reported that neuronal death in patients with Alzheimer's disease, Parkinson's disease, and cerebral ischemia has its origin in the endoplasmic reticulum (ER). IRE1alpha is one of the ER stress transducers that detect the accumulation of unfolded proteins in the ER. IRE1alpha mediates two major cellular responses, which are the unfolded protein response (UPR), a defensive response, and apoptosis that leads to cell death. However, little is known about the regulatory mechanisms that select between the UPR and apoptosis. We identified Jun activation domain-binding protein-1 (JAB1) as a molecule that interacts with IRE1alpha using a yeast two-hybrid system. We demonstrated that JAB1 binds to IRE1alpha in the absence of stress, but that binding is decreased by ER stress inducers. Moreover, mutant JAB1 down-regulates the UPR signaling pathway through tight binding with IRE1alpha. These results suggested that JAB1 may act as a key molecule in selecting the UPR or cell death by association and dissociation with IRE1alpha.  相似文献   

14.
Endoplasmic reticulum stress in health and disease   总被引:28,自引:0,他引:28  
  相似文献   

15.
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.  相似文献   

16.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   

17.
He YY  He KL  Liu CL 《生理科学进展》2011,42(6):419-422
内质网应激是继死亡受体信号途径和线粒体途径之后新近发现的一条细胞凋亡通路,适度的应激可通过未折叠蛋白反应(UPR)产生细胞保护作用,但当应激过强或长时间不缓解时则会触发CHOP、ASK1/JNK及Caspases等通路诱导细胞凋亡。近年来研究发现内质网应激参与多种心血管疾病的发生发展,通过对相关通路的干预可以产生心肌细胞的保护作用,这有望成为防治心脏疾病的新靶点。  相似文献   

18.
Cigarette smoke (CS) is a risk factor for the development of chronic obstructive pulmonary disease (COPD). Oxidative stress is an immediate result of CS exposure and has the ability to modify cellular proteins. The endoplasmic reticulum (ER) is a compartment where early steps of synthesis and folding of membrane and secretory proteins takes place. Oxidative stress has been shown to interfere with protein folding in the ER and elicits the unfolded protein response (UPR). The UPR is a massive endoplasmic reticulum to the nucleus and the cellular kinase cascades signaling pathway. The UPR triggers a series of intracellular events that aim to help cells overcome the consequences of the stress or eliminate rogue cells by altering expression of genes involved in anti-oxidant defense, cell cycle progression, inflammation, and apoptosis. Recent data demonstrate that CS induces the UPR in vitro and in vivo. The timing of UPR induction in smokers and the mechanism of CS-induced UPR are areas of active investigation. The role of UPR in the protection of smoker's lungs from CS-induced oxidative stress, and its contribution to CS-induced apoptosis and inflammation, is beginning to emerge. This review discusses recent data about UPR in COPD and summarizes findings on UPR that have potential relevance to COPD.  相似文献   

19.
20.
内质网是蛋白质合成与折叠、维持Ca2+动态平衡及合成脂类和固醇的场所。遗传或环境损伤引起内质网功能紊乱导致内质网应激,激活未折叠蛋白反应。未折叠蛋白反应是一种细胞自我保护性措施,但是内质网应激过强或持续时间过久可引起细胞凋亡。因此,内质网应激与众多人类疾病的发生发展密切相关。最近研究证明,癌症、炎症性疾病、代谢性疾病、骨质疏松症及神经退行性疾病等有内质网应激信号传递参与。然而内质网应激作为一个有效靶点参与各种疾病发挥作用的功能和机制仍然有待进一步研究。在近年来发表的文献基础上对内质网应激与疾病的关系,以及其可能的作用机制进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号