首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified two Sinorhizobium meliloti chromosomal loci affecting the poly-3-hydroxybutyrate degradation pathway. One locus was identified as the gene acsA, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase. Analysis of the acsA nucleotide sequence revealed that this gene encodes a putative protein with a molecular weight of 72,000 that shows similarity to acetyl-CoA synthetase in other organisms. Acetyl-CoA synthetase activity was not affected in cell extracts of glucose-grown acsA::Tn5 mutants; instead, acetoacetyl-CoA synthetase activity was drastically reduced. These findings suggest that acetoacetyl-CoA synthetase, rather than CoA transferase, activates acetoacetate to acetoacetyl-CoA in the S. meliloti poly-3-hydroxybutyrate cycle. The second locus was identified as phbC, encoding poly-3-hydroxybutyrate synthase, and was found to be required for synthesis of poly-3-hydroxybutyrate deposits.  相似文献   

2.
The existence of acetoacetyl-CoA synthetase in rat brain cytosol is reported. The coupling of this enzyme with cytosolic acetoacetyl-CoA thiolase can provide acetyl-CoA for lipogenesis and cholesterol synthesis without the need for mitochondrial participation. This new route for acetoacetate utilization may be important in developing brain.  相似文献   

3.
The activities of two mitochondrial enzymes concerned in the utilization of acetoacetate, namely 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase, were high throughout the suckling and weanling period in brown adipose tissue of the rat. In contrast, 3-hydroxybutyrate dehydrogenase activity was comparatively low during this period. The activity of cytosolic acetoacetyl-CoA synthetase (involved in lipogenesis) declined after birth and remained low until the pups were weaned. Experiments with brown-adipose-tissue slices from weanling rats indicated that 70% of the [3-14C]acetoacetate utilized was oxidized to 14CO2, and this value was not altered appreciably by the addition of glucose and insulin.  相似文献   

4.
Tumors of peripheral tissues contain low levels of succinyl CoA-acetoacetate CoA transferase activity which is not induced in vitro by prolonged cultivation in 2.5 mM DL-3-hydroxybutyrate. Although this enzyme is considered to be the main agent controlling the extent to which ketone bodies serve as metabolic substrates such tumors metabolize D(-)-3-hydroxy[3(14)C]butyrate to 14CO2. Also addition of 3-hydroxybutyrate and/or acetoacetate reduces the amount of 14CO2 produced from D-[U-14C] glucose suggesting a common metabolic intermediate. These observations can be accounted for by the presence of acetoacetyl-CoA synthetase, an enzyme which is able to synthesize acetoacetyl-CoA directly from acetoacetate, ATP and coenzyme A. This is the first demonstration of this enzyme in tumor tissue. The rate of metabolism of acetoacetate by this enzyme is sufficient to account for the production of CO2 from 3-hydroxybutyrate.  相似文献   

5.
The effect of fasting and refeeding on oxidation, lipogenesis and amino acid synthesis from ketone bodies has been studied in neonatal chick duodenal mucosa. Oxidation and amino acid synthesis were higher from acetoacetate and were stimulated by fasting from both 3-hydroxybutyrate and acetoacetate. On the contrary, lipogenesis was always higher from 3-hydroxybutyrate and fasting reduced lipogenesis rate from acetoacetate (by 66%) but not from 3-hydroxybutyrate. Results suggests the existence of a cytosolic fast-dependent acetoacetyl-CoA synthetase in chick duodenal mucosa which is involved in phospholipid synthesis.  相似文献   

6.
Reactions that generate and remove acetoacetyl-CoA and acetoacetate were measured in mitochondria and cytosol of rat liver. The activities surveyed include acetoacetyl-CoA hydrolase, acetoacetyl-glutathione hydrolase, acetoacetyl-CoA:glutathione acyl transferase, 3-ketothiolases I and II, 3-hydroxy-3-methylglutaryl-CoA lyase and synthase, and acetoacetyl-CoA synthetase. Phosphocellulose chromatography shows that cytosol contains at least four acetoacetyl-CoA hydrolase activities, two of which do not coincide with 3-ketothiolases or 3-hydroxy-3-methylglutaryl-CoA lyase, while mitochondria contain at least three acetoacetyl-CoA hydrolase activities that overlap partially or completely with 3-ketothiolases and 3-hydroxy-3-methyl-glutaryl-CoA lyase. Two of the mitochondrial acetoacetyl-CoA hydrolase activities are not found in cytosol. Cytosol contains at least two and mitochondrial extracts at least six acetoacetyl-glutathione hydrolase activities. Mitochondria and cytosol both contain two isozymes of 3-ketoacyl-CoA thiolase (thiolases Ia and Ib). Chain length specificities show that the mitochondrial and cytosolic forms of thiolase Ia differ from each other. We report a new isozyme of 3-ketoacyl-CoA thiolase (thiolase I) in rat liver cytosol.  相似文献   

7.
The mitochondria of pancreatic beta cells are believed to convert insulin secretagogues into products that are translocated to the cytosol where they participate in insulin secretion. We studied the hypothesis that short chain acyl-CoA (SC-CoAs) might be some of these products by discerning the pathways of SC-CoA formation in beta cells. Insulin secretagogues acutely stimulated 1.5-5-fold increases in acetoacetyl-CoA, succinyl-CoA, malonyl-CoA, hydroxymethylglutaryl-CoA (HMG-CoA), and acetyl-CoA in INS-1 832/13 cells as judged from liquid chromatography-tandem mass spectrometry measurements. Studies of 12 relevant enzymes in rat and human pancreatic islets and INS-1 832/13 cells showed the feasibility of at least two redundant pathways, one involving acetoacetate and the other citrate, for the synthesis SC-CoAs from secretagogue carbon in mitochondria and the transfer of their acyl groups to the cytosol where the acyl groups are converted to SC-CoAs. Knockdown of two key cytosolic enzymes in INS-1 832/13 cells with short hairpin RNA supported the proposed scheme. Lowering ATP citrate lyase 88% did not inhibit glucose-induced insulin release indicating citrate is not the only carrier of acyl groups to the cytosol. However, lowering acetoacetyl-CoA synthetase 80% partially inhibited glucose-induced insulin release indicating formation of SC-CoAs from acetoacetate in the cytosol is important for insulin secretion. The results indicate beta cells possess enzyme pathways that can incorporate carbon from glucose into acetyl-CoA, acetoacetyl-CoA, and succinyl-CoA and carbon from leucine into these three SC-CoAs plus HMG-CoA in their mitochondria and enzymes that can form acetyl-CoA, acetoacetyl-CoA, malonyl-CoA, and HMG-CoA in their cytosol.  相似文献   

8.
Pseudoketogenesis in the perfused rat heart   总被引:1,自引:0,他引:1  
Ketogenesis is usually measured in vivo by dilution of tracers of (3R)-hydroxybutyrate or acetoacetate. We show that, in perfused working rat hearts, the specific activities of (3R)-hydroxybutyrate and acetoacetate are diluted by isotopic exchanges in the absence of net ketogenesis. We call this process pseudoketogenesis. When hearts are perfused with buffer containing 2.3 mM of [4-3H]- plus [3-14C]acetoacetate, the specific activities of [4-3H] and [3-14C]acetoacetate decrease while C-1 of acetoacetate becomes progressively labeled with 14C. This is explained by the reversibility of reactions catalyzed by mitochondrial 3-oxoacid-CoA transferase and acetoacetyl-CoA thiolase. After activation of labeled acetoacetate, the specific activity of acetoacetyl-CoA is diluted by unlabeled acetoacetyl-CoA derived from endogenous fatty acids or glucose. Acetoacetyl-CoA thiolase partially exchanges 14C between C-1 and C-3 of acetoacetyl-CoA. Finally, 3-oxoacid-CoA transferase liberates weakly labeled acetoacetate which dilutes the specific activity of extracellular acetoacetate. An isotopic exchange in the reverse direction is observed when hearts are perfused with unlabeled acetoacetate plus [1-14C]-, [13-14C]-, or [15-14C]palmitate; here also, acetoacetate becomes labeled on C-1 and C-3. Computations of specific activities of (3R)-hydroxybutyrate, acetoacetate, and acetyl-CoA yield minimal rates of pseudoketogenesis ranging from 19 to 32% of the net uptake of (3R)-hydroxybutyrate plus acetoacetate by the heart.  相似文献   

9.
D-(-)-3-Hydroxybutyrate (DHB), the immediate depolymerization product of the intracellular carbon store poly-3-hydroxybutyrate (PHB), is oxidized by the enzyme 3-hydroxybutyrate dehydrogenase to acetoacetate (AA) in the PHB degradation pathway. Externally supplied DHB can serve as a sole source of carbon and energy to support the growth of Sinorhizobium meliloti. In contrast, wild-type S. meliloti is not able to utilize the L-(+) isomer of 3-hydroxybutyrate (LHB) as a sole source of carbon and energy. In this study, we show that overexpression of the S. meliloti acsA2 gene, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase, confers LHB utilization ability, and this is accompanied by novel LHB-CoA synthetase activity. Kinetics studies with the purified AcsA2 protein confirmed its ability to utilize both AA and LHB as substrates and showed that the affinity of the enzyme for LHB was clearly lower than that for AA. These results thus provide direct evidence for the LHB-CoA synthetase activity of the AcsA2 protein and demonstrate that the LHB utilization pathway in S. meliloti is AcsA2 dependent.  相似文献   

10.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.  相似文献   

11.
When the myeloperoxidase-catalyzed peroxidation of acetoacetate proceeds in the presence of piperidinooxy free radical, methyl glyoxal is formed, and the nitroxide group is reduced to the secondary amine. A mechanism is advanced wherein an alpha-carbon-centered acetoacetate radical, generated by the peroxidase, forms an unstable adduct with the nitroxide group, subsequently decomposing to the observed products. Formation of methyl glyoxal, detected as its bis-2,4-dinitrophenylhydrazone by radial thin-layer chromatography, represents a method of determining free radical acetoacetate peroxidation by other peroxidases. It is shown that lactoperoxidase, prostaglandin synthetase, and prostacyclin synthetase generate methyl glyoxal with requirements identical to those of myeloperoxidase. With prostaglandin synthetase, arachidonic acid could replace the supporting peroxide. Substantiation that the catalyst for the reaction in aortic microsomes was prostacyclin synthetase was obtained by showing that 15-hydroperoxyarachidonic acid strongly inhibited the activity (5). The finding that these peroxidases catalyze radical acetoacetate oxidation could have broad implications for cellular damage via lipid peroxidation (7). Specifically, radical oxidation of acetoacetate by prostacyclin synthetase is proposed to be a link between cardiovascular risk factors and the initiation of atherosclerosis.  相似文献   

12.
Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.  相似文献   

13.
Mitochondria and high-speed supernatant were prepared from rat brain homogenates at 0–50 days of age. The development of malonyl-CoA synthetase, malonyl-CoA decarboxylase, coenzyme A-transferases and acetyl-CoA hydrolase was examined and compared to de novo fatty acid biosynthesis. The specific activity of malonyl-CoA synthetase rose steeply between 6 and 10 days, and this sudden increase coincided with peak specific activity of fatty acid synthetase. Similarly, malonate activation by coenzyme A-transfer from succinyl-CoA increased rapidly at the same time. Transfer of the coenzyme A moiety from acetoacetyl-CoA was only minimal during this period. Brain mitochondria had active malonyl-CoA decarboxylase which showed an almost linear increase of specific activity between 0 and 50 days. Acetyl-CoA resulting from malonyl-CoA decarboxylation underwent enzymatic hydrolysis to acetate and free coenzyme A. Only traces of acetoacetate were recovered. In mitochondria, acetyl-CoA hydrolase increased progressively whereas the cytosolic enzyme had high specific activity at birth which declined slowly during maturation.  相似文献   

14.
Abstract: Rat brain succinyl-CoA:3-oxo-acid CoA-transferase (3-Oxo-acid CoA-transferase, EC 2.8.3.5), the first committed enzyme in the oxidation of ketone bodies in mitochondria, was purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis. The enzyme has an apparent molecular weight of 90,000 as determined by (3-150 Sephadex chromatography, and an apparent subunit molecular weight of 53,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was approximately 161 μmol/min/mg of protein. Initial velocity studies of the forward reaction (acetoacetate → acetoacetyl-CoA) are consistent with a "ping pong" mechanism. Substrate inhibition appears above approximately 1 m M acetoacetate. Apparent Km, values were 70 μM for acetoacetate and 156 μ M for succinyl-CoA (the forward reaction), and 59 μ M for acetoacetyl-CoA and 25 m M for succinate (the reverse reaction). These values are markedly different from those reported for this enzyme from pig heart.  相似文献   

15.
M Wolczunowicz  S Rous 《Life sciences》1977,20(8):1347-1352
The activity of cytoplasmic acetyl-CoA synthetase and acetoacetyl-CoA synthetase in both liver and adipose tissue was measured in five groups of rats : fed, fasted, fasted and re-fed, fasted, re-fed and injected with dexamethasone during the re-feeding period, fed and injected with dexamethasone. Fasting was found to have a strong inhibitory effect on the activity of the two enzymes in both adipose tissue and liver, which could be abolished by re-feeding. In adipose tissue, dexamethasone prevented this re-establishment of normal enzyme activity but was without effect in the liver. It can therefore be concluded that dexamethasone inhibits the synthesis of acetyl-CoA and acetoacetyl-CoA synthetases in adipose tissue.  相似文献   

16.
The effects of fasting and of insulin on the incorporation of acetoacetate, β-OH-butyrate, or acetate into fatty acids of liver, adipose tissue, and carcass were studied in mice. Fasting decreases the incorporation of the three precursors, more so in liver than in the other tissues. Insulin totally restores lipogenesis in adipose tissue when the precursor is acetate or acetoacetate. Its effect is less marked on the incorporation of β-OH-butyrate and in the liver. The incorporation of acetate or acetoacetate into fatty acids by 100,000g supernatant protein of mouse liver was also studied. Fasting strongly decreases the incorporation of both compounds and insulin partially restores it. The activities of cytoplasmic acetyl-CoA and acetoacetyl-CoA synthetases were measured in the liver supernatant solution of fed or fasted mice. Fasting strongly decreases the activities of both enzymes; refeeding restores the activities; refeeding and insulin increase the activities above normal levels. Actinomycin suppresses the effect of insulin. The results strongly suggest that insulin is an inducer of the synthesis of cytoplasmic acetyl-CoA and acetoacetyl-CoA synthetases, and that both these synthetases are adaptative enzymes.  相似文献   

17.
1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria.  相似文献   

18.
1. The activities of hydroxymethylglutaryl-CoA synthase and lyase in rat liver were found to be two- to 15-fold greater than those reported by other authors under similar conditions. 2. When expressed on the basis of body weight, no appreciable differences were found between the activities of hydroxymethylglutaryl-CoA synthase in whole homogenates of livers from normal and starved rats. The synthase activity increased by 70% and 140% in livers of alloxan-diabetic rats and rats fed on a high-fat diet respectively. 3. Hydroxymethylglutaryl-CoA lyase activity showed no significant increases in starvation or alloxan-diabetes, but a 40% increase was found in fat-fed rats. 4. Less than 12% of the activities of both enzymes were found in the cytoplasmic fraction of normal liver. The cytoplasmic activity doubled in alloxan-diabetes and starvation; on feeding with a high-fat diet the increase, though significant, was less marked. 6. The intracellular distribution of glutamate dehydrogenase indicated that the changes in the cytoplasmic activities observed were not due to leakage from the mitochondria. 7. Feeding with a normal or high-fat diet after 48hr. starvation caused within 24hr. a decrease in the cytoplasmic activity of hydroxymethylglutaryl-CoA synthase to values lower than those found in rats fed on a corresponding diet for a longer period of time. 8. Acetoacetyl-CoA deacylase activity in liver was about 20% of that of hydroxymethylglutaryl-CoA synthase and was primarily located in the cytoplasm. Starvation or alloxan-diabetes did not alter the acetoacetyl-CoA deacylase activity. 9. It is concluded that variations in the concentrations of enzymes involved in acetoacetate synthesis play no major role in the regulation of ketone-body formation in starvation and alloxan-diabetes. The changes in the cytoplasmic activities of hydroxymethylglutaryl-CoA synthase and lyase suggest that acetoacetate synthesis can occur in the cytoplasm. This may play a role in the disposal of surplus acetyl-CoA arising in the cytoplasm when lipogenesis is inhibited.  相似文献   

19.
Summary The pathway for uptake of acids during the solvent formation phase of an acetone-butanol fermentation by Clostridium acetobutylicum ATCC 824 was studied. 13C NMR investigations on actively metabolizing cells showed that butyrate can be taken up from the medium and quantitatively converted to butanol without accumulation of intermediates. The activities of acetate phosphotransacetylase, acetate kinase and phosphate butyryltransferase rapidly decreased to very low levels when the organism began to form solvents. This indicates that the uptake of acids does not occur via a reversal of these acid forming enzymes. No short-chain acyl-CoA synthetase activity or butyryl phosphate reducing activity could be detected. Based on our results and a critical analysis of literature data on acetone-butanol fermentations, it is suggested that an acetoacetyl-CoA: acetate (butyrate) CoA-transferase is solely responsible for uptake and activation of acetate and butyrate in C. acetobutylicum. The transferase exhibits a broad carboxylic acid specificity. The key enzyme in the uptake is acetoacetate decarboxylase, which is induced late in the fermentation and pulls the transferase reaction towards formation of acetoacetate. The major implication is that it is not feasible to obtain a batch-wise butanol fermentation without acetone formation and retention of a good yield of butanol.  相似文献   

20.
Biosynthesis of the isoprenoid precursor, isopentenyl diphosphate, is a critical function in all independently living organisms. There are two major pathways for this synthesis, the non-mevalonate pathway found in most eubacteria and the mevalonate pathway found in animal cells and a number of pathogenic bacteria. An early step in this pathway is the condensation of acetyl-CoA and acetoacetyl-CoA into HMG-CoA, catalyzed by the enzyme HMG-CoA synthase. To explore the possibility of a small molecule inhibitor of the enzyme functioning as a non-cell wall antibiotic, the structure of HMG-CoA synthase from Enterococcus faecalis (MVAS) was determined by selenomethionine MAD phasing to 2.4 A and the enzyme complexed with its second substrate, acetoacetyl-CoA, to 1.9 A. These structures show that HMG-CoA synthase from Enterococcus is a member of the family of thiolase fold enzymes and, while similar to the recently published HMG-CoA synthase structures from Staphylococcus aureus, exhibit significant differences in the structure of the C-terminal domain. The acetoacetyl-CoA binary structure demonstrates reduced coenzyme A and acetoacetate covalently bound to the active site cysteine through a thioester bond. This is consistent with the kinetics of the reaction that have shown acetoacetyl-CoA to be a potent inhibitor of the overall reaction, and provides a starting point in the search for a small molecule inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号