首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of azaserine (250 micrograms) to day-4 chick embryos in ovo was shown to induce micromelial limbs. In the present study, biosynthesis of cartilage-characteristic proteoglycan H (PG-H) as an index of limb chondrogenesis was examined in normal and micromelial hind limbs from day-7 chick embryos by biochemical and immunological methods. (1) Metabolic labelling of the micromelial limbs with [6-3H]-glucose and [35S]sulphate, followed by analysis of labelled proteoglycans by glycerol-density-gradient centrifugation under dissociative conditions, showed a marked reduction in PG-H synthesis. (2) PG-H synthesized by micromelial limbs differed from that synthesized by normal limbs in possessing a slower sedimenting velocity and much lower amounts of chondroitin sulphates. (3) The amount of PG-H core protein in micromelial limbs was significantly decreased to about 19% on a per limb basis and about 42% on a per DNA basis of that in normal limbs, as determined by e.l.i.s.a. (4) The transition from PG-M to PG-H during limb formation was retarded in micromelial limbs as judged by an indirect immunofluorescence technique using antibodies against PG-M and PG-H. (5) The deficiency of incorporation of labelled glucose into chondroitin sulphate chains of PG-H in micromelial limbs was partially restored by using [6-3H]-glucosamine as a precursor, suggesting that the synthesis of UDP-N-acetylhexosamine, required for chondroitin sulphate chain synthesis of PG-H in micromelial limbs, was decreased. These results suggest that the reduction in the synthesis of PG-H as well as the production of an abnormal form of PG-H during a critical period of limb morphogenesis may be important factors in explaining the micromelia induced by azaserine.  相似文献   

2.
After a dose of 10 micrograms of 6-aminonicotinamide (6-AN) was administered to day-4- chick embryo in ovo, micromelia was obviously observed in the hind limbs of 7-day chick embryos. We examined the teratogenic mechanism of 6-AN by using the normal or micromelial hind limbs (buds) from day 5 to day 7, with special attention to the biosynthesis of glycosaminoglycan (GAG) and proteoglycan as an index of limb chondrogenesis. The present study provides evidence for abnormalities in the levels of GAG or proteoglycan biosynthesis in the micromelial hind limbs (buds). 1) Both [35S]sulfate and [3H]glucosamine incorporation into GAG per 10 limbs or mg DNA of the micromelia were inhibited, suggesting a decrease of GAG synthesis. 2) The micromelial limbs synthesized low-sulfated chondroitin sulfate (chondroitin) as judged by the 35S/3H ratio, the proportion of unsulfated disaccharide (delta Di-0S), and the result of cellulose acetate electrophoresis, although there were no significant differences in the approximate molecular size of 35S-chondroitin sulfates synthesized between the normal and micromelial limbs. 3) PAPS-synthesizing activity in the micromelial limbs was markedly inhibited, and this may result in the production of low-sulfated proteoglycan. 4) The transition from mesenchymal- to cartilage-specific proteoglycan synthesis did not appear in the micromelial limbs as judged by the sedimentation profiles. 5) 6-AN caused marked reductions in the oxygen consumption and ATP level of the micromelial limbs, thereby causing the defect in PAPS formation. We suggest that these 6-AN-induced sequential molecular defects (the reduction of respiratory activity, ATP and PAPS level, and concomitant interference with GAG and proteoglycan biosynthesis) in the limbs (buds) during the critical period of limb morphogenesis must be major factors resulting in the cartilage growth retardation or disorder, i.e., micromelia.  相似文献   

3.
Heparin biosynthesis has been investigated with mouse mastocytoma in vitro. Minced tumour tissue catalysed the incorporation of [35S]sulphate and [3H]glucosamine into heparin and to a smaller extent into chondroitin sulphate. Addition of cycloheximide caused an inhibition (greater than 80%) of incorporation of each labelled precursor into both polysaccharides. Addition of benzyl beta-D-xyloside relieved the inhibition of incorporation into chondroitin sulphate and restored it to more than threefold that of the control incubation. The effect of beta-D-xyloside on incorporation into heparin was less marked although a consistent small increase of incorporation into this polysaccharide was observed. beta-D-Xyloside did, however, cause a marked incorporation of 35S and 3H labels into material of low molecular weight, which appeared to comprise heparin-like fragments. It is proposed that these fragments arise through a breakdown of the usual process of heparin biosynthesis.  相似文献   

4.
The synthesis of proteoglycans by human T lymphocytes   总被引:1,自引:0,他引:1  
We have examined the proteoglycans produced by highly-purified cultures of human T-lymphocytes. The proteoglycans were metabolically labelled with [35S]sulphate and analysed in cellular and medium fractions using DEAE-cellulose chromatography, gel filtration and specific enzymatic and chemical degradations. The results showed that the T cells synthesized a relatively homogeneous, proteinase-resistant chondroitin 4-sulphate proteoglycan that accumulated in the culture medium during a 48 h incubation period. The cellular fraction contained a significant amount of free chondroitin sulphate chains that were not secreted into the medium. These polysaccharides were formed by intracellular degradation of proteoglycan in a chloroquine-sensitive process, indicating a requirement for an acidic environment. In contrast to chondroitin sulphate derived from proteoglycan, chondroitin sulphates synthesized on the exogenous primer, beta-D-xyloside, were mainly secreted by the cells. beta-D-Xylosides caused an 8-fold stimulation in the synthesis of chondroitin sulphate, but decreased the synthesis of proteoglycan by about 50%. These proteoglycans contained shorter chondroitin sulphate chains than their normal counterparts. The results indicate that although proteoglycans are mainly secretory components in human T-cell cultures, a specific metabolic step leads to the intracellular accumulation of free glycosaminoglycans. Separate functions are likely to be associated with the intracellular and secretory pools of chondroitin sulphate.  相似文献   

5.
Inhibition of protein synthesis by cycloheximide 10(-3)M reduced the incorporation of [35S]sulphate into heparan sulphate to about 5% of untreated hepatocytes. Addition of rho-nitrophenyl beta-D-xyloside could partially revert this inhibitory effect. The sulphated material isolated from the cell layer or secretions of hepatocytes grown in presence of cycloheximide and rho-nitrophenyl beta-D-xyloside were shown to be mostly free heparan sulphate chains not bound to core protein. Covalent association of beta-xylosides to the heparan sulphates was demonstrated for heparan sulphate synthetized in the presence of [35S]sulphate, cycloheximide and the fluorogenic 4-methylumbelliferyl beta-D-xyloside. Beta-Xylosides served as an initiator of heparan sulphate chain synthesis in rat hepatocytes only in the absence of protein synthesis. Heparan sulphates primed on artificial beta-xylosides are slightly smaller in molecular size and are more sulphated than chains linked to core protein.  相似文献   

6.
This paper reports the first direct demonstration of de novo synthesis of chondroitin sulphate proteoglycans by Kurloff cells. This was achieved using highly purified splenic Kurloff cells labelled in vitro with [35S]sulphate and D-[U-3H]glucosamine. A single population of sulphated proteoglycans was observed after dissociative extraction, DEAE-cellulose chromatography, Sepharose CL 6B chromatography and fluorography after electrophoresis. These were large, highly anionic proteoglycans and were completely digested by chondroitinase AC or ABC. Moreover, glycosaminoglycan extracted from Kurloff cells had the electrophoretic mobility of control chondroitin sulphate.  相似文献   

7.
Proteoglycan biosynthesis by human osteochondrophytic spurs (osteophytes) obtained from osteoarthritic femoral heads at the time of surgical joint replacement was studied under defined culture conditions in vitro. Osteophytes were primarily present in two anatomic locations, marginal and epi-articular. Minced tissue slices were incubated in the presence of [(35)S]sulphate or [(14)C]glucosamine. Osteophytes incorporated both labelled precursors into proteoglycan, which was subsequently characterized by CsCl-isopycnic-density-gradient ultracentrifugation and chromatography on Sepharose CL-2B. The material extracted with 0.5m-guanidinium chloride showed 78.1% of [(35)S]sulphate in the A1 fraction after centrifugation. Only 23.0% of the [(35)S]sulphate in this A1 fraction was eluted in the void volume of Sepharose CL-2B under associative conditions. About 60-80% of the [(35)S]sulphate in the tissue 4m-guanidinium chloride extract was associated with monomeric proteoglycan (fraction D1). The average partition coefficient (K(av.)) of the proteoglycan monomer on Sepharose CL-2B was 0.28-0.33. Approx. 12.4% of this monomer formed stable aggregates with high-molecular-weight hyaluronic acid in vitro. Sepharose CL-2B chromatography of fractions with lower buoyant densities (fractions D2-D4) demonstrated elution profiles on Sepharose CL-2B substantially different than that of fraction D1, indicative of the polydisperse nature of the newly synthesized proteoglycan. Analysis of the composition and chain size of the glycosaminoglycans showed the following: (1) preferential elution of both [(35)S]sulphate and [(14)C]glucosamine in the 0.5m-LiCl fraction on DEAE-cellulose; (2) the predominant sulphated glycosaminoglycan was chondroitin 6-sulphate (60-70%), with 9-11% keratan sulphate in the monomer proteoglycan; (3) K(av.) values of 0.38 on Sephadex G-200 and 0.48 on Sepharose CL-6B were obtained with papain-digested and NaBH(4)-treated D1 monomer respectively. A comparison of the synthetic with endogenous glycosaminoglycans indicated similar types. These studies indicated that human osteophytes synthesized in vitro sulphated proteoglycans with some characteristics similar to those of mature human articular cartilage, notably in the size of their proteoglycan monomer and predominance of chondroitin 6-sulphate. They differed from articular cartilage primarily in the lack of substantial quantities of keratan sulphate and aggregation properties associated with monomer interaction with hyaluronic acid.  相似文献   

8.
Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.  相似文献   

9.
Incorporation of [35S]]sulphate, [3H]glucose and [3H]serine into glycosaminoglycans and proteoglycans of embryonic-chicken sternum was measured in vitro in incubation medium containing 4-methylumbelliferyl beta-D-xyloside or p-nitrophenyl beta-D-xyloside at low concentrations, and in the absence of inhibitors of protein synthesis. Incorporation of sulphate was decreased by 80% in incubations in which 1mM-4-methylumbelliferyl beta-xyloside or 2.5 mM-p-nitrophenyl beta-xyloside was present; under these conditions, serum factors stimulated incorporation to only a small extent. When the concentration of the xyloside was decreased tenfold, incorporation of sulphate was inhibited by 60-70%, but when normal human serum or L-3,3',5-tri-iodothyronine or both were also added to the incubation medium, incorporation was markedly stimulated. Experiments in which [35S]sulphate and [3H]glucose were incorporated simultaneously, and enzymic analysis of glycosaminoglycans formed in such experiments, indicated that chondroitin sulphate formed in the presence of 0.1 mM-4-methylumbelliferyl beta-xyloside contained 30-40% less sulphate than did chondrotin sulphate synthesized in the absence of xylosides. Similar experiments, with [3H]serine instead of [3H]glucose, suggested also a 20-30% decrease in chain length of the chondroitin sulphate; this was confirmed by direct gel filtration of labelled glycosaminoglycans on a calibrated column. Incorporation of [3H]glucose or [3H]serine was stimulated by serum and tri-iodothyronine in parallel with incorporation of sulphate. The changes seen in the total chondroitin sulphate were mirrored in the major proteoglycan fraction, purified by isopycnic centrifugation of salt-extracted proteoglycans. The labelling pattern of chondroitin sulphate from this proteoglycan indicated that decreased sulphation of chondroitin sulphate was largely due to the inferior ability of short polysaccharide chains to accept sulphate, with some direct interference with transfer of sulphate to all chains. The results also suggested that the action of serum factors on synthesis of proteochondroitin sulphate is exercised at the level of either protein synthesis or transport to the sites of initiation of polysaccharide synthesis.  相似文献   

10.
Cyclofenil diphenol, a weak non-steroidal oestrogen, binds to albumin. In the presence of concentrations of albumin just sufficient to keep cyclofenil diphenol in solution, the compound inhibited the synthesis of [35S]proteoglycans, [3H]glycoproteins, [3H]hyaluronate and [3H]proteins in primary cultures of chondrocytes from the Swarm rat chondrosarcoma in a dose-dependent manner. When excess albumin was present, conditions were found (90 micrograms of cyclofenil diphenol and 4 mg of albumin per ml of culture medium) which completely inhibited [35S]proteoglycan and [3H]hyaluronate synthesis but had little effect on [3H]protein or [3H]glycoprotein synthesis. The time of onset of inhibition of [35S]proteoglycan synthesis by cyclofenil diphenol was very rapid (t1/2 less than 25 min) and incompatible with an action mediated through suppression of proteoglycan core protein synthesis. Cyclofenil diphenol inhibited the synthesis of [35S]chondroitin sulphate chains onto p-nitrophenyl beta-D-xyloside in the cultures. Cyclofenil diphenol had little effect on the secretion from chondrocytes of [35S]proteoglycans synthesized immediately prior to treatment. Chondrocyte cultures treated with cyclofenil diphenol recovered their biosynthetic activities almost completely within 3 h of removing the compound from the culture medium. Cyclofenil diphenol had a similar inhibitory action on the synthesis of [35S]proteoglycans in secondary cultures of human dermal fibroblasts from both normal subjects and patients with systemic sclerosis. It is proposed that cyclofenil diphenol inhibits the synthesis of [35S]proteoglycans by interfering with the formation of the glycosaminoglycan side chains of these molecules in the Golgi apparatus of cells. The action may be due to disturbance of Golgi membrane organization by the compound.  相似文献   

11.
Monensin (10nm-1mum) inhibited the incorporation of [(35)S]sulphate and [(3)H]glucosamine into proteoglycans by rat chondrosarcoma cells, but the incorporation of [(3)H]glucosamine into hyaluronate was unaffected. The results suggest that hyaluronate synthesis occurs in a cell compartment separate from chondroitin sulphate synthesis.  相似文献   

12.
Chlorate: a reversible inhibitor of proteoglycan sulfation   总被引:8,自引:0,他引:8  
Bovine aorta endothelial cells were cultured in medium containing [3H]glucosamine, [35S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [3H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.  相似文献   

13.
Chick-embryo cartilage contains a unique set of proteoglycans. Type H proteoglycan (PG-H) is the most abundant, constituting over 90% of the total cartilage hexuronate. We previously showed that treatment of PG-H with chondroitinase ACII and keratanase yields a protein-enriched core molecule [PG(-CS,KS)] with enzymically modified linkage oligosaccharides of the chondroitin sulphate and keratan sulphate chains. We report here that further treatment of PG(-CS,KS) with pepsin and N-oligosaccharide glycopeptidase (almond glycopeptidase) released four distinct types of mannose-containing oligosaccharide. Two of them were shown to be: (Formula: see text). Of the mannose-containing glycopeptides formed by pepsin digestion, about 40% (as mannose) were resistant to N-oligosaccharide glycopeptidase. Since the resistant fraction was enriched in keratan sulphate remnants, it is suggest that the mannose-containing oligosaccharides in this fraction represent those located in a keratan sulphate-enriched region of PG-H.  相似文献   

14.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

15.
The effect of cycloheximide on chondroitin sulphate biosynthesis was studied in bovine articular cartilage maintained in culture. Addition of 0.4 mM-cycloheximide to the culture medium was followed, over the next 4h, by a first-order decrease in the rate of incorporation of [35S]sulphate into glycosaminoglycan (half-life, t 1/2 = 32 min), which is consistent with the depletion of a pool of proteoglycan core protein. Addition of 1.0 mM-benzyl beta-D-xyloside increased the rate of incorporation of [35S]sulphate and [3H]acetate into glycosaminoglycan, but this elevated rate was also diminished by cycloheximide. It was concluded that cycloheximide exerted two effects on the tissue; not only did it inhibit the synthesis of the core protein, but it also lowered the tissue's capacity for chondroitin sulphate chain synthesis. Similar results were obtained with chick chondrocytes grown in high-density cultures. Although the exact mechanism of this secondary effect of cycloheximide is not known, it was shown that there was no detectable change in cellular ATP concentration or in the amount of three glycosyltransferases (galactosyltransferase-I, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II) involved in chondroitin sulphate chain synthesis. The sizes of the glycosaminoglycan chains formed in the presence of cycloheximide were larger than those formed in control cultures, whereas those synthesized in the presence of benzyl beta-D-xyloside were consistently smaller, irrespective of the presence of cycloheximide. These results suggest that beta-D-xylosides must be used with caution to study chondroitin sulphate biosynthesis as an event entirely independent of proteoglycan core-protein synthesis, and they also indicate a possible involvement of the core protein in the activation of the enzymes of chondroitin sulphate synthesis.  相似文献   

16.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

17.
Basement-membrane proteoglycans, biosynthetically labelled with [35S]sulphate, were isolated from normal and transformed mouse mammary epithelial cells. Proteoglycans synthesized by normal cells contained mainly heparan sulphate and, in addition, small amounts of chondroitin sulphate chains, whereas transformed cells synthesized a relatively higher proportion of chondroitin sulphate. Polysaccharide chains from transformed cells were of lower average Mr and of lower anionic charge density compared with chains isolated from the untransformed counterparts, confirming results reported previously [David & Van den Berghe (1983) J. Biol. Chem. 258, 7338-7344]. A large proportion of the chains isolated from normal cells bound with high affinity to immobilized antithrombin, and the presence of 3-O-sulphated glucosamine residues, previously identified as unique markers for the antithrombin-binding region of heparin [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555], could be demonstrated. A significantly lower proportion of the chains derived from transformed cells bound with high affinity to antithrombin, and a corresponding decrease in the amount of incorporated 3-O-sulphate was observed.  相似文献   

18.
The ability of rabbit oviduct explants to incorporate radiolabelled precursors into specific secretory products was investigated. Ampullary and isthmic oviduct segments were cultured in the presence of [3H]glucosamine or [35S]sodium sulphate. Medium samples were analysed for the presence of secreted, labelled macromolecules. Explants incorporated the [3H]glucosamine and secreted labelled glycoproteins in vitro. SDS gel electrophoresis and subsequent fluorographic analysis of culture medium demonstrated a differential secretion of glycoproteins between the ampulla and the isthmus. Although ampullary tissue secreted a greater amount of labelled glycoproteins during the sampling period, the major secretory constituent of Mr approximately 66,000 was common to both oviduct segments. Tissue incubated with [35S]sodium sulphate also secreted a labelled glycoprotein or subunit of Mr approximately 66,000. The results indicate that rabbit oviduct explants are capable of synthesis and secretion of specific sulphated glycoproteins in vitro and that there is a difference in the type and amount of secretion produced between the two oviduct segments.  相似文献   

19.
Biosynthesis of glycosaminoglycans by cultured mastocytoma cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Biosynthesis of glycosaminoglycans by several lines of cultured neoplastic mouse mast cells was studied by incorporation of [35S]sulphate (and in some cases [6-3H]glucosamine) into macromolecular materials found in both the cells and their growth media. Such intracellular and extracellular radioactively labelled materials (shown to be glycosaminoglycans by susceptibility to digestion with heparinase) were further characterized by ion-exchange chromatography and by digestion with testicular hyaluronidase and chondroitinase. All but one cell line produced chondroitin sulphate as the major sulphated glycosaminoglycan; the remainder of the glycosaminoglycan was heparin-like material. No [3H]hyaluronic acid was synthesized. Cells of a newly derived line, termed P815S, synthesized more glycosaminoglycan than the other lines. This glycosaminoglycan, found in both cells and growth medium, was almost entirely chondroitin 4-sulphate. No chondroitin 6-sulphate was found. The chondroitin 4-sulphate from the cells was shown by gel filtration to be smaller than the chondroitin 4-sulphate in the media of these cultures. This discovery of relatively high proportions of chondroitin 4-sulphate in these mastocytoma-derived cells is noteworthy, since mast cells have generally been considered to produce heparin as their major glycosaminoglycan.  相似文献   

20.
1. Chondroitin sulphate was isolated from different regions of rat costal cartilage after extensive proteolysis of the tissues. The molecular weight, determined by gel chromatography, of the polysaccharide obtained from an actively growing region (lateral zone) near the osteochondral junction was higher than that of the polysaccharide isolated from the remaining portion of the costal cartilage (medial zone). 2. In both types of cartilage the molecular weight of chondroitin sulphate, labelled with [(35)S]sulphate, remained unchanged in vivo over a period of 10 days, approximately corresponding to the half-life of the chondroitin sulphate proteoglycan. The molecular-weight distribution of chondroitin [(35)S]sulphate, labelled in vivo or in vitro, was invariably identical with that of the bulk polysaccharide from the same tissue. It is concluded that the observed regional variations in molecular-weight distribution were established at the time of polysaccharide biosynthesis. 3. In tissue culture more than half of the (35)S-labelled polysaccharide-proteins of the two tissues was released into the medium within 10 days of incubation. The released materials were of smaller molecular size than were the corresponding native proteoglycans. In contrast, the molecular-weight distribution of the chondroitin [(35)S]sulphate (single polysaccharide chains) remained constant throughout the incubation period. 4. A portion (about 20%) of the total radioactive material released from (35)S-labelled cartilage in tissue culture was identified as inorganic [(35)S]sulphate. No corresponding decrease in the degree of sulphation of the labelled polysaccharide could be detected. These findings suggest that a limited fraction of the proteoglycan molecules had been extensively desulphated. 5. It is suggested that the initial phase of degradation involves proteolytic cleavage of the proteoglycan, but the constituent polysaccharide chains remain intact. The partially degraded proteoglycan may be eliminated from the cartilage by diffusion into the circulatory system. An additional degradative process, which may occur intracellularly, includes desulphation of the polysaccharide, probably in conjunction with a more extensive breakdown of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号