首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球变暖与陆地生态系统研究中的野外增温装置   总被引:9,自引:0,他引:9       下载免费PDF全文
由于化石燃料燃烧和森林砍伐等人类活动引起的地球大气层中温室气体(主要是二氧化碳)的富集已导致全球平均温度在20世纪升高了0.6 ℃,并将在本世纪继续上升1.4~5.8 ℃。这种地质历史上前所未有的全球变暖将对陆地植物和生态系统产生深远影响,并通过全球碳循环的改变反馈于全球气候变化。作为全球变化生态学的主要研究方法之一,生态系统增温实验能够为生态模型提供参数估计和模型验证。然而由于在世界各地使用的增温装置不同,使得各个生态系统之间的结果比较和整合难以实施,增加了模型预测的不确定性。该文通过比较几种常见的野外增温装置在模拟全球变暖情形时的优缺点,指出利用不同增温装置进行全球变暖研究中应注意的一些问题;同时探讨了全球变暖控制实验研究中的一些关键性的科学问题。  相似文献   

2.
Looking to the Future of Ecosystem Services   总被引:2,自引:1,他引:1  
Ecosystem services—the benefits that people obtain from ecosystems—are essential to human existence, but demands for services often surpass the capacity of ecosystems to provide them. Lack of ecological information often precludes informed decision making about ecosystem services. The Millennium Ecosystem Assessment (MA) was conceived in part to provide the necessary ecological information to decision makers. To this end, the MA set out to address the stated needs and concerns of decision makers and examine the ecological dynamics and uncertainties underlying these concerns. To improve our understanding of their information needs and concerns, we interviewed 59 decision makers from five continents. The respondents indicated that although most people generally agree about the ideal state of the planet—free of poverty and extreme inequality, replete with cultural and biological diversity—they often disagree about the best way to achieve these goals. Further, although nonspecialists are generally concerned about the environment and may have a good understanding of some of issues, they often have a more limited grasp of the ecological dynamics that drive the issues of concern. We identify some of the principal uncertainties about ecosystem dynamics and feedbacks that underlie the concerns of decision makers. Each of the papers in this special feature addresses these ecological feedbacks from the perspective of a specific discipline, suggesting ways in which knowledge of ecological dynamics can be incorporated into the MA’s assessment and scenario-building process.  相似文献   

3.
Scenarios can help planners and decision makers to think through uncertainties about the future and make decisions that are robust to a variety of possible outcomes. To develop useful scenarios we need to understand the main processes of relevance to the system of interest. Ecological processes, and the feedbacks that they can create between human actions and human well-being, are thought to be important for human societies. Current uncertainties over the long-term resilience of ecosystems and the substitutability of ecosystem goods and services can be translated into three alternative realities: ecosystems may be relatively brittle, relatively resilient, or largely irrelevant. Although these extremes are only rough characterizations of reality, they help us to focus our thinking about the possible outcomes of interactions between humans and the rest of the biosphere. Existing global scenarios can be categorized into a small number of families based on shared themes and assumptions about the future. Considering the internal consistency of four of the main scenario families in relation to the three alternative ecological realities suggests that all existing scenarios make strong, implicit assumptions about the resilience of ecosystems. After a detailed discussion of individual examples, we present a synthesis of the incorporation of ecology in existing scenarios. All current scenarios are inconsistent with at least one possible property of ecosystems and their likely interaction with society. The interrelationships between ecological reality, human views of ecosystems, and social responses to actual and perceived ecological change are complex. For the Millennium Ecosystem Assessment and future scenario exercises, we recommend that essential ecological assumptions should be made explicit to ensure that the details of each scenario are consistent with both the perceived and the actual degree of resilience of ecosystems.  相似文献   

4.
Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land‐cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained.  相似文献   

5.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

6.
Shaping global environmental decisions using socio-ecological models   总被引:1,自引:0,他引:1  
One of the most ambitious ecological studies of the past few decades was the Millennium Ecosystem Assessment (MA), which examined the consequences of ecosystem change for human well-being. The MA developed global ecological scenarios as a process to inform policy options, despite enormous uncertainties. These scenarios were based on an interlocking suite of models that forecast the future. Following the recent completion and publication of the MA, there is now movement towards making the value of ecosystem services an integral part of key policy decisions. Here, we review the MA approach and suggest areas where immediate progress can be made to increase the likelihood that decision-makers will embrace the vision of assessments such as the MA.  相似文献   

7.
The carbon cycle modulates climate change, via the regulation of atmospheric CO2, and it represents one of the most important services provided by ecosystems. However, considerable uncertainties remain concerning potential feedback between the biota and the climate. In particular, it is unclear how global warming will affect the metabolic balance between the photosynthetic fixation and respiratory release of CO2 at the ecosystem scale. Here, we present a combination of experimental field data from freshwater mesocosms, and theoretical predictions derived from the metabolic theory of ecology to investigate whether warming will alter the capacity of ecosystems to absorb CO2. Our manipulative experiment simulated the temperature increases predicted for the end of the century and revealed that ecosystem respiration increased at a faster rate than primary production, reducing carbon sequestration by 13 per cent. These results confirmed our theoretical predictions based on the differential activation energies of these two processes. Using only the activation energies for whole ecosystem photosynthesis and respiration we provide a theoretical prediction that accurately quantified the precise magnitude of the reduction in carbon sequestration observed experimentally. We suggest the combination of whole-ecosystem manipulative experiments and ecological theory is one of the most promising and fruitful research areas to predict the impacts of climate change on key ecosystem services.  相似文献   

8.
生物多样性和生态系统服务情景模拟是指对未来生物多样性和生态系统服务变化轨迹的定量估计,二者相互关联并为长期、稳定的保护和恢复生态系统提供了重要科学依据。梳理生物多样性以及生态系统服务预测情景的核心观点,讨论基于生物多样性和生态系统服务情景模拟的保护决策支持途径,以期服务于我国生物多样性与生态系统服务预测研究的发展和深化。研究凝练结果如下:物种分布模型需要进行更规范的评价以明晰其对具体对象的适用性,生态系统预测模型亟待在关系结构的基础上嵌入更多的生态系统过程和社会经济过程,生态系统服务评估模型有必要强化对生物多样性、生态系统服务、人类福祉级联特征的刻画;全球气候变化驱动了未来区域生物多样性的大幅改变;土地利用则是陆地生态系统服务预测中的核心驱动变量。生态区划与区域尺度情景模拟、景观尺度下的生态安全格局构建、基于社会生态网络的社区适应三点重要展望方向将对基于情景模拟的我国生态系统保护决策提供重要的理论和实践支持。  相似文献   

9.
白杨 《应用生态学报》2012,23(6):1641-1648
通过评价不同管理方式下区域生态系统关键功能的得失,分析了万全镇各种生态系统功能及其空间分布特征,根据不同的发展需求建立情景并对其进行权衡.结果表明: 2009年,万全镇各种生态系统提供的支持功能价值为0.58亿元,以释氧功能(0.37亿元)为主;调节功能价值为12.38亿元,以气候调节(11.27亿元)为主;总功能价值达12.97亿元,是同期万全镇GDP(8.88亿元)的1.46倍.与2002年相比,2009年研究区各项生态系统功能价值均下降,其中气候调节功能和涵养水源功能的降幅最多;政策情景和保护情景下,各项生态系统功能价值的增减趋势基本一致,除释氧功能和营养元素循环功能价值表现为下降外,其他功能价值均明显增加,但保护情景下研究区生态系统功能总价值的增量高于政策情景,尤其是涵养水源功能和固碳功能.保护情景是研究区社会经济可持续发展的最优管理模式.  相似文献   

10.
杨玉盛 《生态学报》2017,37(1):1-11
随着全球环境变化和人类活动对生态系统影响的日益加深,生态系统结构和功能发生强烈变化,生态系统提供各类资源和服务的能力在显著下降。在这种背景下,全面认识生态系统的结构功能与全球环境变化的关系已成为当前生态学研究的热点之一。本文综述了全球环境变化对典型生态系统(包括森林生态系统、河口湿地生态系统、城市生态系统)影响以及全球环境变化适应的研究现状,分析研究面临的困难及挑战。在此基础上,提出对未来研究发展趋势的展望。在森林生态系统与全球环境变化研究上,未来应重视能更好模拟现实情景的、多因子、长期的全球环境变化控制试验,并注重不同生物地球化学循环之间的耦合作用。在湿地生态系统与全球环境变化研究上,未来应加强氮沉降、硫沉降及盐水入侵对湿地生态系统碳氮循环的影响,明晰滨海湿地的蓝碳功能,加强极端气候和人类干扰影响下湿地生态系统结构和功能变化及恢复力的研究。在城市生态系统与全球环境变化研究上,未来应深化城市生物地球化学循环机制研究,实现城市生态系统的人本需求侧重与转向,并开展典型地区长期、多要素综合响应研究。在全球环境变化适应研究上,未来应构架定量化、跨尺度的适应性评价体系,加强典型区域/部门的适应性研究以及适应策略实施的可行性研究,注重适应与减缓对策的关联研究及实施的风险评估。期望本综述为我国生态系统与全球环境变化研究提供一些参考。  相似文献   

11.
The global human population is growing exponentially, close to a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People desire the economic advantages provided by coastal development along with the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in nearshore project design and impact mitigation has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology, and adaptive management to incorporate science into decisions about uses of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize tidally influenced shorelines and habitats (i.e., riparian forests, marshes, unvegetated flats, rocky shores, seagrass meadows, kelp forests) for preservation, conservation, and restoration. Case studies of Clinton, Washington, and Port Townsend, Washington, demonstrate the incorporation of an ecological perspective and technological solutions into design of overwater structures to minimize impacts on nearshore ecosystems. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think these kinds of methods can contribute to the net improvement of already degraded ecosystems. The ingredients include applied science to understand the issues, education, incentives, empirical data, cumulative impact analysis, and an effective adaptive management program. Because the option of net ecosystem improvement is often more costly than alternatives such as no net loss, commitment by the local or regional community to this approach is essential.  相似文献   

12.
湖泊-流域生态系统管理的内容与方法   总被引:5,自引:2,他引:3  
刘永  郭怀成  黄凯  郁亚娟  戴永立  毛国柱 《生态学报》2007,27(12):5352-5360
在流域生态系统管理研究综述的基础上,对湖泊一流域生态系统管理的概念进行了界定,对水环境管理、综合流域管理与流域生态系统管理之间的差异进行了对比分析。确定了生态系统生态学、流域生态学、生态系统健康和流域方法为湖泊.流域生态系统管理的理论基础,生态系统方法和流域分析为其方法学基础。在上述分析的基础上,提出了湖泊.流域生态系统管理的6个主要步骤:研究范围界定、基础信息收集与基本生态学问题的分析和评价、管理目标设定、系统综合、生态系统综合评价、适应性管理;识别出湖泊-流域生态系统管理中的3个关键问题:①生态系统管理中的不确定性和障碍分析;②流域土地利用变化对湖泊水质和生态系统的影响;③流域生态子系统与社会子系统的关联。  相似文献   

13.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

14.
Understanding the drivers that dictate the productivity of marine ecosystems continues to be a globally important issue. A vast literature identifies three main processes that regulate the production dynamics of such ecosystems: biophysical, exploitative and trophodynamic. Exploring the prominence among this ‘triad’ of drivers, through a synthetic analysis, is critical for understanding how marine ecosystems function and subsequently produce fisheries resources of interest to humans. To explore this topic further, an international workshop was held on 10–14 May 2010, at the National Academy of Science''s Jonsson Center in Woods Hole, MA, USA. The workshop compiled the data required to develop production models at different hierarchical levels (e.g. species, guild, ecosystem) for many of the major Northern Hemisphere marine ecosystems that have supported notable fisheries. Analyses focused on comparable total system biomass production, functionally equivalent species production, or simulation studies for 11 different marine fishery ecosystems. Workshop activities also led to new analytical tools. Preliminary results suggested common patterns driving overall fisheries production in these ecosystems, but also highlighted variation in the relative importance of each among ecosystems.  相似文献   

15.
While habitat fragmentation represents a major threat to global biodiversity, its impacts on provision of ecosystem services are largely unknown. We analysed biodiversity value and provision of multiple ecosystem services in 110 fragments of lowland heathland ecosystems in southern England, in which vegetation dynamics have been monitored for over 30 years. Decreasing fragment size was found to be associated with a decrease in biodiversity and recreational values, but an increase in relative carbon storage, aesthetic value and timber value. The trade-off between either biodiversity or recreational values with the other ecosystem services therefore became more pronounced as heathland size decreased. This was attributed to a higher rate of woody succession in smaller heathland fragments over the past three decades, and contrasting values of different successional vegetation types for biodiversity and provision of ecosystem services. These results suggest that habitat fragmentation can reduce the potential for developing “win win” solutions that contribute to biodiversity conservation while also supporting socio-economic development. Approaches to multi-purpose management of fragmented landscapes should therefore consider the potential trade-offs in ecosystem services and biodiversity associated with fragmentation, in order to make an effective contribution to sustainable development.  相似文献   

16.
Human population growth and the improving condition of human populations in developing countries affect ecological health and integrity. Agricultural development co-opts increasing amounts of global primary production, degrading lands, and reducing species richness. The development of human populations and associated increasing demands for energy assures disposal for increasing amounts of waste, further damaging local ecosystems. Global climate change resulting from diffuse pollutants will affect even the most pristine ecosystems. The human challenge is to maintain ecological integrity and restore ecosystems in the face of accelerating development. The present level of ecosystem protection in not sufficient. Only integrated means of assessing recovery potential and acting to restore ecological productivity can assure continued availability of ecosystem services ranging from free production of food and fiber by plants and animals to final waste assimilation. Restoring ecosystems presumes that species sources are available and that adequate management is in place to monitor and manage recovery. Today, even in the most advanced societies, management is fragmented by non-integrative thinking and the failure to realize that the human scale of political decision-making and management is inappropriate to assure ecosystem restoration. Only by adopting radically new ideas integrating management and ecosystem science can ecological integrity be maintained.  相似文献   

17.
陆地生态系统碳平衡主要研究方法评述   总被引:9,自引:2,他引:7  
陆地生态系统碳平衡是全球变化科学中的核心问题之一,目前也是生态科学中的前沿与热点问题,而陆地生态系统的复杂性与不确定性决定了对陆地生态系统碳平衡估测的复杂性和不确定性。为研究这一复杂性问题,已发展了许多研究方法。可分为“自下而上”与“自上而下”两种,各种方法都有其自身的优势和劣势。相关方向也已经有了大量的研究报道,但是,不同的研究由于在方法、时间与空间尺度等存在的差异,使得许多研究结果和预测很难被有效的整合或适用于大范围甚至全球水平。综述了陆地碳平衡的主要研究方法,分析和比较了各方法的特点,指出在研究中对不同方法的结果进行分析和比较,以及采用综合方法的必要性。  相似文献   

18.
Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct ‘savanna-like’ state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.  相似文献   

19.
全球变化已对陆地生态系统结构和功能产生深远影响,明确生态系统对全球变化的响应和适应机制是实现人类对生态系统服务可持续利用的前提.联网实验是理解区域乃至全球尺度生态系统结构功能对全球变化要素响应和适应的重要手段.科学的顶层设计有利于实现联网数据间融合、比对以及分析,进而支撑普适性生态学理论的发展.本文从全球变化联网控制实...  相似文献   

20.
A shift from traditional engineering approaches to ecologically-based techniques will require changing societal values regarding ‘how and what’ is defined as engineering and design. Non-human species offer many ecological engineering examples that are often beneficial to ecosystem function and other biota. For example, organisms known as ‘ecosystem engineers’ build, modify, and destroy habitat in their quest for food and survival. Similarly, ‘keystone species’ have greater impacts on community or ecosystem function than would be predicted from their abundance. The capacity of these types of organisms to affect ecosystems is great. They exert controlling influences over ecosystems and communities by altering resource allocation, creating habitats and modifying relative competitive advantages.Species’ effects in ecosystems, although context-dependent, can be evaluated as ‘beneficial’ or ‘detrimental’. The evaluation depends on whether effects on other species or ecosystem function are more or less desirable from a given perspective. Organisms with beneficial impacts facilitate the presence of other species, employ efficient nutrient cycling, and are sometimes characterized by specific mutualisms. In contrast, many cases of detrimental engineering are found from introduced (i.e., exotic) species and are characterized by a loss of species richness, a lack of nutrient retention and the degradation of ecosystem integrity. Species’ impacts on ecosystems and community traits have been quantified in ecological studies and can be used similarly to understand, design and model human engineering structures and impacts on the landscape. Emulation of species with beneficial impacts on ecosystems can provide powerful guidance to the goals of ecological engineering. Using role model organisms that have desirable effects on species diversity and ecosystem function will be important in developing alternatives to traditional engineering practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号