首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyr Z of photosystem II mediates electron transfer from the water splitting site, a Mn4Ca cluster, to the specialized chlorophyll assembly P680. Due to its proton-limited redox properties and the proximity to the Mn cluster, it is thought to play a critical role in the proton-coupled electron transfer reactions that constitute the four-step oxidation mechanism (so-called S-state transitions) of water to molecular oxygen. Spectroscopic evidence for the Tyr Z radical has been scarce in intact preparations (it is difficult to probe it optically, and too short-lived for EPR characterization) until recently. Advances in recent years have allowed the trapping at liquid helium temperatures and EPR characterization of metalloradical intermediates, attributed to tyrosyl Z* magnetically interacting with the Mn cluster. We have extended these studies and examined the evolution of the spectra of five intermediates: S0YZ*, S0YZ* (with 5% MeOH), S1YZ*, S2YZ*, and S2YZ* (with 5% MeOH) in the temperature range of 11-230 K. A rapid-scan EPR method has been applied at elevated temperatures. The tyrosyl radical decouples progressively from Mn, as the Mn relaxation rate increases with an increase in temperature. Above approximately 100 K, the spectra collapse to the unperturbed spectrum of Tyr Z*, which is found to be somewhat broader than that of the stable Tyr D* radical. This study provides a simple means for recording the spectrum of Tyr Z* and extends earlier observations that link the photochemistry at liquid helium temperatures to the photochemistry at temperatures that support S-state transitions.  相似文献   

2.
Photosystem II preparations poised in the S(2)...Q(A) state produce no detectable intermediate during straightforward illumination at liquid helium temperatures. However, upon flash illumination in the range of 77-190 K, they produce a transient state which at -10 degrees C advances to S(3) or after rapid cooling to 10 K gives rise to a 116 G wide metalloradical EPR signal. The latter decays with half-times on the order of a few minutes, presumably by charge recombination, and can be regenerated repeatedly by illumination at 10 K. The constraints for Tyr Z oxidation are attributed to the presence of excess positive charge in S(2). Elevated temperatures are required presumably to overcome a thermal barrier in the deprotonation of Tyr Z(+) or most likely to allow secondary proton transfer away from the base partner of Tyr Z. Treatment with 5% (v/v) MeOH appears to remove the constraints for Tyr Z oxidation, and a 160 G wide metalloradical EPR signal is produced by illumination at 10 K, which decays with a half-time of ca. 80 s. Formation of the metalloradical signals is accompanied by reversible changes in the Mn multiline signal. The intermediates are assigned to Tyr Z(*) magnetically interacting with the Mn cluster in S(2), S(2)Y(Z)(*). A molecular model which extends an earlier suggestion and provides a plausible explanation of a number of observations, including the binding of small molecules to the Mn cluster, is presented.  相似文献   

3.
The oxygen-evolving complex (OEC) of photosystem II (PSII) consists of a Mn cluster (believed to be tetranuclear) and a tyrosine (Tyr Z or Y(Z)). During the sequential absorption of four photons by PSII, the OEC undergoes four oxidative transitions, S(0) to S(1), ..., S(3) to (S(4))S(0). Oxygen evolves during the S(3) to S(0) transition (S(4) being a transient state). Trapping of intermediates of the S-state transitions, particularly those involving the tyrosyl radical, has been a goal of ultimate importance, as that can test critically models employing a role of Tyr Z in proton (in addition to electron) transfer, and also provide important clues about the mechanism of water oxidation. Until very recently, however, critical experimental information was lacking. We review and evaluate recent observations on the trapping of metalloradical intermediates of the S-state transitions, at liquid helium temperatures. These transients are assigned to Tyr Z(*) magnetically interacting with the Mn cluster. Besides the importance of trapping intermediates of this unique catalytic mechanism, liquid helium temperatures offer the additional advantage that proton motions (unlike electron transfer) are blocked except perhaps across strong hydrogen bonds. This paper summarizes the recent observations and discusses the constraints that the phenomenology imposes.  相似文献   

4.
The Mn donor complex in the S1 and S2 states and the iron-quinone acceptor complex (Fe2+-Q) in O2-evolving photosystem II (PS II) preparations from a thermophilic cyanobacterium, Synechococcus sp., have been studied with X-ray absorption spectroscopy and electron paramagnetic resonance (EPR). Illumination of these preparations at 220-240 K results in formation of a multiline EPR signal very similar to that assigned to a Mn S2 species observed in spinach PS II, together with g = 1.8 and 1.9 EPR signals similar to the Fe2+-QA- acceptor signals seen in spinach PS II. Illumination at 110-160 K does not produce the g = 1.8 or 1.9 EPR signals, nor the multiline or g = 4.1 EPR signals associated with the S2 state of PS II in spinach; however, a signal which peaks at g = 1.6 appears. The most probable assignment of this signal is an altered configuration of the Fe2+-QA- complex. In addition, no donor signal was seen upon warming the 140 K illuminated sample to 215 K. Following continuous illumination at temperatures between 140 and 215 K, the average X-ray absorption Mn K-edge inflection energy changes from 6550 eV for a dark-adapted (S1) sample to 6551 eV for the illuminated (S2) sample. The shift in edge inflection energy indicates an oxidation of Mn, and the absolute edge inflection energies indicate an average Mn oxidation state higher than Mn(II). Upon illumination a significant change was observed in the shape of the features associated with 1s to 3d transitions. The S1 spectrum resembles those of Mn(III) complexes, and the S2 spectrum resembles those of Mn(IV) complexes. The extended X-ray absorption fine structure (EXAFS) spectrum of the Mn complex is similar in the S1 and S2 states. Simulations indicate O or N ligands at 1.75 +/- 0.05 A, transition metal neighbor(s) at 2.73 +/- 0.05 A, which are assumed to be Mn, and terminal ligands which are probably N and O at a range of distances around 2.2 A. The Mn-O bond length of 1.75 A and the transition metal at 2.7 A indicate the presence of a di-mu-oxo-bridged Mn structure. Simulations indicate that a symmetric tetranuclear cluster is unlikely to be present, while binuclear, trinuclear, or highly distorted tetranuclear structures are possible. The striking similarity of these results to those from spinach PS II suggests that the structure of the Mn complex is largely conserved across evolutionarily diverse O2-evolving photosynthetic species.  相似文献   

5.
W F Beck  G W Brudvig 《Biochemistry》1987,26(25):8285-8295
The reaction of hydroxylamine with the O2-evolving center of photosystem II (PSII) in the S1 state delays the advance of the H2O-oxidation cycle by two charge separations. In this paper, we compare and contrast the reactions of hydroxylamine and N-methyl-substituted analogues with the electron-donor side of PSII in both O2-evolving and inactivated [tris(hydroxymethyl)aminomethane- (Tris-) washed] spinach PSII membrane preparations. We have employed low-temperature electron paramagnetic resonance (EPR) spectroscopy in order to follow the oxidation state of the Mn complex in the O2-evolving center and to detect radical oxidation products of hydroxylamine. When the reaction of hydroxylamine with the S1 state in O2-evolving membranes is allowed to proceed to completion, the S2-state multiline EPR signal is suppressed until after three charge separations have occurred. Chemical removal of hydroxylamine from treated PSII membrane samples prior to illumination fails to reverse the effects of the dark reaction, which argues against an equilibrium coordination of hydroxylamine to a site in the O2-evolving center. Instead, the results indicate that the Mn complex is reduced by two electrons by hydroxylamine, forming the S-1 state. An additional two-electron reduction of the Mn complex to a labile "S-3" state probably occurs by a similar mechanism, accounting for the release of Mn(II) ions upon prolonged dark incubation of O2-evolving membranes with high concentrations of hydroxylamine. In N,N-dimethylhydroxylamine-treated, Tris-washed PSII membranes, which lack O2 evolution activity owing to loss of the Mn complex, a large yield of dimethyl nitroxide radical is produced immediately upon illumination at temperatures above 0 degrees C. The dimethyl nitroxide radical is not observed upon illumination under similar conditions in O2-evolving PSII membranes, suggesting that one-electron photooxidations of hydroxylamine do not occur in centers that retain a functional Mn complex. We suggest that the flash-induced N2 evolution observed in hydroxylamine-treated spinach thylakoid membrane preparations arises from recombination of hydroxylamine radicals formed in inactivated O2-evolving centers.  相似文献   

6.
Inhibitory treatment by acetate, followed by illumination and rapid freezing, is known to trap the S(2)Y(Z)(*) state of the O(2)-evolving complex (OEC) in photosystem II (PS II). An EPR spectrum of this state exhibits broad split signals due to the interaction of the tyrosyl radical, Y(Z)(*), with the S = 1/2 S(2) state of the Mn(4) cluster. We present a novel approach to analyze S(2)Y(Z)(*) spectra of one-dimensionally (1-D) oriented acetate-inhibited PS II membranes to determine the magnitude and relative orientation of the S(2)Y(Z)(*) dipolar vector within the membrane. Although there exists a vast body of EPR data on isolated spins in oriented membrane sheets, the present study is the first of its kind on dipolar-coupled electron spin pairs in such systems. We demonstrate the feasibility of the technique and establish a rigorous treatment to account for the disorder present in partially oriented 1-D membrane preparations. We find that (i) the point-dipole distance between Y(Z)(*) and the Mn(4) cluster is 7.9 +/- 0.2 A, (ii) the angle between the interspin vector and the thylakoid membrane normal is 75 degrees, (iii) the g(z)()-axis of the Mn(4) cluster is 70 degrees away from the membrane normal and 35 degrees away from the interspin vector, and (iv) the exchange interaction between the two spins is -275 x 10(-)(4) cm(-)(1), which is antiferromagnetic. Due to the sensitivity of EPR line shapes of oriented spin-coupled pairs to the interspin distance, the present study imposes a tighter constraint on the Y(Z)-Mn(4) point-dipole distance than obtained from randomly oriented samples. The geometric constraints obtained from the 1-D oriented sample are combined with published models of the structure of Mn-depleted PS II to propose a location of the Mn(4) cluster. A structure in which Y(Z) is hydrogen bonded to a manganese-bound hydroxide ligand is consistent with available data and favors maximal orbital overlap between the two redox center that would facilitate direct electron- and proton-transfer steps.  相似文献   

7.
The active site for water oxidation in Photosystem II (PSII) goes through five sequential oxidation states (S(0) to S(4)) before O(2) is evolved. It consists of a Mn(4)CaO(5) cluster and Tyr(Z), a redox-active tyrosine residue. Chloride ions have been known for long time to be required for the function of the enzyme. However, X-ray data have shown that they are located about 7? away from the Mn(4)CaO(5) cluster, a distance that seems too large to be compatible with a direct involvement of chloride in the water splitting chemistry. We have investigated the role of this anion by substituting I(-) for Cl(-) in the cyanobacterium Thermosynechococcus elongatus with either Ca(2+) or Sr(2+) biosynthetically assembled into the Mn(4) cluster. The electron transfer steps affected by the exchanges were investigated by time-resolved UV-visible absorption spectroscopy, time-resolved EPR at room temperature and low temperature cw-EPR spectroscopy. In both Ca-PSII and Sr-PSII, the Cl(-)/I(-) exchange considerably slowed down the two S(3)Tyr(Z)(?)→(S(3)Tyr(Z)(?))'→S(0) reactions in which the fast phase, S(3)Tyr(Z)(?)→(S(3)Tyr(Z)(?))', reflects the electrostatically triggered expulsion of one proton from the catalytic center caused by the positive charge near/on Tyr(Z)(?) and the slow phase corresponds to the S(0) and O(2) formations and to a second proton release. The t(1/2) for S(0) formation increased from 1.1ms in Ca/Cl-PSII to ≈6ms in Ca/I-PSII and from 4.8ms in Sr/Cl-PSII to ≈45ms in Sr/I-PSII. In all cases the Tyr(Z)(?) reduction was the limiting step. The kinetic effects are interpreted by a model in which the Ca(2+) binding site and the Cl(-) binding site, although spatially distant, interact. This interaction is likely mediated by the H-bond and/or water molecules network(s) connecting the Cl(-) and Ca(2+) binding sites by which proton release may be channelled.  相似文献   

8.
An electron spin-echo envelope modulation study [Tang, X.-S., Diner, B. A., Larsen, B. S., Gilchrist, M. L., Jr., Lorigan, G. A., and Britt, R. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 704-708] and a recent Fourier transform infrared study [Noguchi, T., Inoue, Y., and Tang, X.-S. (1999) Biochemistry 38, 10187-10195], both conducted with [(15)N]histidine-labeled photosystem II particles, show that at least one histidine residue coordinates the O(2)-evolving Mn cluster in photosystem II. Evidence obtained from site-directed mutagenesis studies suggests that one of these residues may be His332 of the D1 polypeptide. The mutation D1-H332E is of particular interest because cells of the cyanobacterium Synechocystis sp. PCC 6803 that contain this mutation evolve no O(2) but appear to assemble Mn clusters in nearly all photosystem II reaction centers [Chu, H.-A., Nguyen, A. P. , and Debus, R. J. (1995) Biochemistry 34, 5859-5882]. Photosystem II particles isolated from the Synechocystis D1-H332E mutant are characterized in this study. Intact D1-H332E photosystem II particles exhibit an altered S(2) state multiline EPR signal that has more hyperfine lines and narrower splittings than the S(2) state multiline EPR signal observed in wild-type PSII particles. However, the quantum yield for oxidizing the S(1) state Mn cluster is very low, corresponding to an 8000-fold slowing of the rate of Mn oxidation by Y(Z)(*), and the temperature threshold for forming the S(2) state is approximately 100 K higher than in wild-type PSII preparations. Furthermore, the D1-H332E PSII particles are unable to advance beyond the Y(Z)(*)S(2) state, as shown by the accumulation of a narrow "split" EPR signal under multiple turnover conditions. In Mn-depleted photosystem II particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in D1-H332E is accelerated in comparison to wild-type, showing that the mutation alters the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-His332 being located near the Mn-Y(Z) complex and perhaps ligating Mn.  相似文献   

9.
The S2 state of the oxygen-evolving complex (OEC) of photosystem II is heterogeneous, exhibiting two main EPR spectral forms, the multiline and the g = 4.1 signal. It is not clearly established whether this heterogeneity develops during the S1 to S2 transition or is already present in the precursor states. We have compared the spectra of the S1YZ* intermediate, obtained by visible light excitation (induction of charge separation) of the S1 state at liquid He temperatures, (S1YZ*)vis, or by near-infrared (NIR) light excitation of the S2 state (utilization of the unusual property of the Mn cluster to act as an oxidant of Yz when excited by NIR), (S1YZ*)NIR. The decay kinetics of the (S1YZ*)vis spectrum at 11 K was also studied by the application of rapid-scan EPR. The two spectra share in common a signal with a characteristic feature at g = 2.035, but the (S1YZ*)vis spectrum contains in addition a fast decaying component 26 G wide. The analysis of the surface of the rapid-scan spectra yielded 270 +/- 35 and 90 +/- 15 s for the respective half-times of the two components of the (S1YZ*)vis spectrum at 11 K. (S1YZ*)vis advances efficiently to S2 when annealed at 200 K; notably the g = 2.035 signal advances to the multiline while the 26 G component advances to the g = 4.1 conformation. The "26 G" component is absent or very small, respectively, in thermophilic cyanobacteria or glycerol-containing spinach samples, in correlation to vanishing or very small amounts of the g = 4.1 component in the S2 spectrum. The results validate the assignment of S1YZ* to a true S1 to S2 intermediate and imply that the heterogeneity observed in S2 is already present in S1. Tentative valences are assigned to the individual Mn ions of the OEC in the two heterogeneous conformations of S1.  相似文献   

10.
X-ray absorption spectroscopy at the Mn K-edge has been utilized to study the origin of the g = 4.1 EPR signal associated with the Mn-containing photosynthetic O2-evolving complex. Formation of the g = 4.1 signal by illumination of Photosystem II preparations at 140 K is associated with a shift of the Mn edge inflection point to higher energy. This shift is similar to that observed upon formation of the S2 multiline EPR signal by 190 K illumination. The g = 4.1 signal is assigned to the Mn complex in the S2 state.  相似文献   

11.
The origin of the "S3" EPR signal from calcium-depleted photosystem 2 samples has been investigated. This signal is observed after freezing samples under illumination and has been assigned to an interaction between the manganese cluster and an oxidized histidine radical [Boussac et al. (1990) Nature 347; 303-306]. In calcium-depleted samples prepared by three different methods, we observed the trapping of the tyrosine radical YZ+ under conditions which also formed the "S3" signal. An "S3"-type signal and YZ+ were also formed in PS2 samples treated with the water analogue ammonia. Following illumination at 277 K, the "S3" and YZ+ signals decayed at the same rate at 273 K in the dark. Both the YZ+ and "S3" signals decayed on storage at 77 K and could be subsequently regenerated by illumination at 8-77 K. No evidence to support histidine oxidation was found. The effects of DCMU, chelators, and alkaline pH on the dark-stable multiline S2 and the "S3" signals from calcium-depleted samples were determined. Both signals required the presence of EGTA or citrate for maximum yield. The addition of DCMU caused a reduction in the yield of "S3" generated by freezing under illumination. Incubation at pH 7.5 resulted in the loss of both signals. We propose that a variety of treatments which affect calcium and chloride binding cause a stabilization of the S2 state and slow the reduction of YZ+. This allows the trapping of YZ+, the interaction with the manganese cluster (probably in the S2 state) resulting in the "S3" signal. The data allow the position of the manganese cluster to be estimated as within 10 A of tyrosine Z (D1-161).  相似文献   

12.
Zhang C  Boussac A  Rutherford AW 《Biochemistry》2004,43(43):13787-13795
The states induced by illumination at 7 K in the oxygen-evolving enzyme (PSII) from Thermosynechococcus elongatus were studied by EPR. In the S(0) and S(1) redox states, two g approximately 2 EPR signals, a split signal and a g = 2.03 signal, respectively, were generated by illumination with visible light. These signals were comparable to those already reported in plant PSII in terms of their g value, shape, and stability at low temperatures. We report that the formation and decay of these signals correlate with EPR signals from the semiquinone of the first quinone electron acceptor, Q(A)(-). The light-induced EPR signals from oxidized side-path electron donors (Cyt b(559), Car, and Chl(Z)) were also measured, and from these and the signals from Q(A)(-), estimates were made of the proportion of centers involved in the formation of the g approximately 2 signals (approximately 50% in S(0) and 40% in S(1)). Comparisons with the signals generated in plant PSII indicated approximately similar yields for the S(0) split signal. A single laser flash at 7 K induced more than 75% of the maximum split and g = 2.03 EPR signal observed by continuous illumination, with no detectable oxidation of side-path donors. The matching electron acceptor side reactions, the high quantum yield, and the relatively large proportion of centers involved support earlier suggestions that the state being monitored is Tyr(Z)(*)Q(A)(-), with the g approximately 2 EPR signals arising from Tyr(Z)(*) interacting magnetically with the Mn complex. The current picture of the photochemical reactions occurring in PSII at low temperatures is reassessed.  相似文献   

13.
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.  相似文献   

14.
M Sivaraja  J Tso  G C Dismukes 《Biochemistry》1989,28(24):9459-9464
EPR studies have revealed that removal of calcium using citric acid from the site in spinach photosystem II which is coupled to the photosynthetic O2-evolving process produces a structural change in the manganese cluster responsible for water oxidation. If done in the dark, this yields a modified S1' oxidation state which can be photooxidized above 250 K to form a structurally altered S2' state, as seen by formation of a "modified" multiline EPR signal. Compared to the "normal" S2 state, this new S2'-state EPR signal has more lines (at least 25) and 25% narrower 55Mn hyperfine splittings, indicative of disruption of the ligands to manganese. The calcium-depleted S2' oxidation state is greatly stabilized compared to the native S2 oxidation state, as seen by a large increase in the lifetime of the S2' EPR signal. Calcium reconstitution results in the reduction of the oxidized tyrosine residue 161YD+ (Em approximately 0.7-0.8 V, NHE) within the reaction center D1 protein in both the S1' and S2' states, as monitored by its EPR signal intensity. We attribute this to reduction by Mn. Thus a possible structural role which calcium plays is to bring YD+ into redox equilibrium with the Mn cluster. Photooxidation of S2' above 250 K produces a higher S state (S3 or S4) having a new EPR signal at g = 2.004 +/- 0.003 and a symmetric line width of 163 +/- 3 G, suggestive of oxidation of an organic donor, possibly an amino acid, in magnetic contact with the Mn cluster. This EPR signal forms in a stoichiometry of 1-2 relative to YD+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The S(3) state of the water-oxidizing complex (WOC) of photosystem II (PSII) is the last state that can be trapped before oxygen evolution occurs at the transient S(4) state. A number of EPR-detectable intermediates are associated with this critical state. The preceding paper examined mainly the decay of S(3) at cryogenic temperatures leading to the formation of a proton-deficient configuration of S(2) termed S(2)'. This second paper examines all intermediates formed by the near-IR light (NIR) excitation of the S(3) state and compares these with the light-excitation products of the S(2)' state. The rather complex set of observations is organized in a comprehensive flowchart, the central part of which is the S(3)...Q(A)(-) state. This state can be converted to various intermediates via two main pathways: (A) Excitation of S(3) by NIR light at temperatures below 77 K results presumably in the formation of an excited S(3) state, S(3), which decays via either of two pathways. Slowly at liquid helium temperatures but much faster at 77 K, S(3) decays to an EPR-silent state, denoted S(3)' ', which by raising the temperature to ca. 190 K converts to a spin configuration of the Mn cluster, characterized by g = 21, 3.7 in perpendicular and g = 23 in parallel mode EPR, denoted S(3)'. Upon further warming to 220 K, S(3)' relaxes to the untreated S(3) state. Below about 77 K and more favorably at liquid helium temperatures, an alternative pathway of S(3) decay via the metallo-radical intermediate S(2)'Z*...Q(A)(-) can be traced. This leads to the metastable state S(2)'Z...Q(A) via charge recombination. S(2)'Z* is characterized by a split-radical signal at g = 2, while all S(2)' transients are characterized by the same g = 5/2.9 (S = (7)/(2)) configuration of the Mn cluster with small modifications, reflecting an influence of the tyr Z oxidation state on the crystal-field symmetry at the Mn cluster. (B) S(2)'...Q(A) can be reached alternatively by the slow charge recombination of S(3) and Q(A)(-) at 77 K. White-light illumination of S(2)'.Q(A) below about 20 K results in charge separation, reforming the intermediate S(2)'Z*...Q(A)(-). Thermally activated branches to the main pathways are also described, e.g., at elevated temperatures tyr Z* reoxidizes S(2)' to the S(3) state. The above observations are discussed in terms of a molecular model of the S(3) state of the OEC. Main aspects of the model are the following. Intermediates, isoelectronic to S(3), are attributed to the NIR-induced translocation of the positive hole to different Mn ligands, or to tyr Z. On the basis of a comparison of the electron-donating efficiency of tyr Z and tyr D at cryogenic temperatures, it is inferred that the Mn cluster acts as the main proton acceptor from tyr Z. Water associated with the Mn cluster is assumed to be in hydrogen-bonding equilibrium with tyr Z, and an array comprising this water and adjacent water (or OH or O) ligands to Mn followed by a sequence of proton acceptors is proposed to act as an efficient proton translocation pathway. Oxidation of the tyrosine by P(680)(+) repels protons to and out from the Mn cluster. This proposed role of tyr Z in the water-splitting process is described as a proton repeller/electron abstractor.  相似文献   

16.
Near-IR (NIR) excitation at liquid He temperatures of photosystem II (PSII) membranes from the cyanobacterium Synechococcus vulcanus or from spinach poised in the S2 state results in the production of a g = 2.035 EPR resonance, reminiscent of metalloradical signals. The signal is smaller in the spinach preparations, but it is significantly enhanced by the addition of exogenous quinones. Ethanol (2-3%, v/v) eliminates the ability to trap the signal. The g = 2.035 signal is identical to the one recently obtained by Nugent et al. by visible-light illumination of the S1 state, and preferably assigned to S1Y(Z*) [Nugent, J. H. A., Muhiuddin, I. P., and Evans, M. C. W. (2002) Biochemistry 41, 4117-4126]. The production of the g = 2.035 signal by liquid He temperature NIR excitation of the S2 state is paralleled by a significant reduction (typically 40-45% in S. vulcanus) of the S2 state multiline signal. This is in part due to the conversion of the Mn cluster to higher spin states, an effect documented by Boussac et al. [Boussac, A., Un, S., Horner, O., and Rutherford, A. W. (1998) Biochemistry 37, 4001-4007], and in part due to the conversion to the g = 2.035 configuration. Following the decay of the g = 2.035 signal at liquid helium temperatures (decay halftimes in the time range of a few to tens of minutes depending on the preparation), annealing at elevated temperatures (-80 degrees C) results in only partial restoration of the S2 state multiline signal. The full size of the signal can be restored by visible-light illumination at -80 degrees C, implying that during the near-IR excitation and subsequent storage at liquid helium temperatures recombination with Q(A-) (and therefore decay of the S2 state to the S1 state) occurred in a fraction of centers. In support of this conclusion, the g = 2.035 signal remains stable for several hours (at 11 K) in centers poised in the S2...Q(A) configuration before the NIR excitation. The extended stability of the signal under these conditions has allowed the measurement of the microwave power saturation and the temperature dependence in the temperature range of 3.8-11 K. The signal intensity follows Curie law temperature dependence, which suggests that it arises from a ground spin state, or a very low-lying excited spin state. The P1/2 (microwave power at half-saturation) value is 1.7 mW at 3.8 K and increases to 96 mW at 11 K. The large width of the g = 2.035 signal and its relatively fast relaxation support the assignment to a radical species in the proximity of the Mn cluster. The whole phenomenology of the g = 2.035 signal production is analogous to the effects of NIR excitation on the S3 state [Ioannidis, N., Nugent, J. H. A., and Petrouleas, V. (2002) Biochemistry 41, 9589-9600] producing an S2'Y(Z*) intermediate. In the present case, the intermediate is assigned to S1Y(Z*). The NIR-induced increase in the oxidative capability of the Mn cluster is discussed in relation to the photochemical properties of a Mn(III) ion that exists in both S2 and S3 states. The EPR properties of the S1Y(Z*) intermediate cannot be reconciled easily with our current understanding of the magnetic properties of the S1 state. It is suggested that oxidation of tyr Z alters the magnetic properties of the Mn cluster via exchange of a proton.  相似文献   

17.
Geijer P  Morvaridi F  Styring S 《Biochemistry》2001,40(36):10881-10891
Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S(3) state of the oxygen-evolving complex in photosystem II. The S(3) state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 +/- 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S(3) state remains. We propose that the signal arises from the interaction between the Mn cluster and Y(Z), resulting in the spin-coupled S(2)Y(Z)(*) signal. Our data suggest that the potential of the Y(Z)(*)/Y(Z) redox couple is sensitive to the ambient pH in the S(3) state. The alkaline pH decreases the potential of the Y(Z)(*)/Y(Z) couple so that Y(Z) can give back an electron to the S(3) state, thereby obtaining the S(2)Y(Z)(*) EPR signal. The tyrosine oxidation also involves proton release from Y(Z), and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S(3)Y(Z) to S(2)Y(Z)(*) by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S(3)Y(Z) state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of Y(Z)(*)/Y(Z) and S(3)/S(2) at different pH values are discussed. We also compare the pH-induced S(2)Y(Z)(*) signal with the S(2)Y(Z)(*) signal from Ca(2+)-depleted photosystem II.  相似文献   

18.
H Kühne  V A Szalai  G W Brudvig 《Biochemistry》1999,38(20):6604-6613
The binding of chloride and acetate to photosystem II (PSII) was examined to elucidate the mechanism of acetate inhibition. The mode of inhibition was studied, and individual binding sites were assigned by steady-state O2 evolution measurements in correlation with electron paramagnetic resonance (EPR) results. Two binding sites were found for acetate, one chloride-sensitive on the electron donor side and one chloride-insensitive on the electron acceptor side. The respective binding constants were as follows: KCl = 0.5 +/- 0.2 mM (chloride binding to the donor side), KI = 16 +/- 5 mM (acetate binding to the donor side), and KI' = 130 +/- 40 mM (acetate binding to the acceptor side). When acetate was bound to the acceptor side of PSII, 200 K illumination induced a narrowed form of the QA-FeII EPR signal, the yield of which was independent of the chloride concentration. When acetate was bound to the donor side, room-temperature illumination produced the S2YZ* state. EPR measurements showed that both the yield and formation rate of this state increased with acetate concentration. Increasing chloride concentrations slowed the rate of formation of the S2YZ* state, but did not affect the steady-state yield of the S2YZ* state. These findings indicate that the light-induced reactions in acetate-inhibited PSII are modulated by both donor side and acceptor side binding of acetate, while the steady-state yield of the S2YZ* state at the high PSII concentrations used for EPR measurements depends primarily on acceptor side turnover. Our data further support a close proximity of chloride to YZ*, indicating a possible role for chloride in the electron-transfer mechanism at the O2-evolving complex.  相似文献   

19.
Su JH  Havelius KG  Ho FM  Han G  Mamedov F  Styring S 《Biochemistry》2007,46(37):10703-10712
The interaction EPR split signals from photosystem II (PSII) have been reported from the S0, S1, and S3 states. The signals are induced by illumination at cryogenic temperatures and are proposed to reflect the magnetic interaction between YZ* and the Mn4Ca cluster. We have investigated the formation spectra of these split EPR signals induced in PSII enriched membranes at 5 K using monochromatic laser light from 400 to 900 nm. We found that the formation spectra of the split S0, split S1, and split S3 EPR signals were quite similar, but not identical, between 400 and 690 nm, with maximum formation at 550 nm. The major deviations were found between 440 and 480 nm and between 580 and 680 nm. In the regions around 460 and 680 nm the amplitudes of the formation spectra were 25-50% of that at 550 nm. A similar formation spectrum was found for the S2-state multiline EPR signal induced at 0 degrees C. In general, the formation spectra of these signals in the visible region resemble the reciprocal of the absorption spectra of our PSII membranes. This reflects the high chlorophyll concentration necessary for the EPR measurements which mask the spectral properties of other absorbing species. No split signal formation was found by the application of infrared laser illumination between 730 and 900 nm from PSII in the S0 and S1 states. However, when such illumination was applied to PSII membranes poised in the S3 state, formation of the split S3 EPR signal was observed with maximum formation at 740 nm. The quantum yield was much less than in the visible region, but the application of intensive illumination at 830 nm resulted in accumulation of the signal to an amplitude comparable to that obtained with illumination with visible light. The split S3 EPR signal induced by NIR light was much more stable at 5 K (no observable decay within 60 min) than the split S3 signal induced by visible light (50% of the signal decayed within 30 min). The split S3 signals induced by each of these light regimes showed the same EPR spectral features and microwave power saturation properties, indicating that illumination of PSII in the S3 state by visible light or by NIR light produces a similar configuration of YZ* and the Mn4Ca cluster.  相似文献   

20.
The effect of extraction of weakly bound Ca2+ by low-pH treatment on the O2-evolving apparatus was studied by use of low-temperature electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy. In low-pH-treated PSII membranes, an S2 EPR multiline signal with modified line shape was induced by illumination at 0 degrees C, but its signal amplitude decreased upon lowering the excitation temperature with concomitant oxidation of cytochrome (cyt) b-559 in place of Mn. The half-inhibition temperature for formation of the modified multiline signal was found at -33 degrees C, which was much higher than that for formation of the normal S2 state in untreated control membranes. Signal IIf was normally induced down to -30 degrees C, but its dependence on excitation temperature was different from that for modified S2. This was interpreted as indicating that the low-temperature blockage of modified S2 formation is due to the incapability of electron abstraction from the Mn cluster. The Mn K-edge of X-ray absorption near-edge structure (XANES) spectrum shifted to lower energy by 0.8 eV after low-pH treatment, but the shift was reversed by addition of Ca2+. Upon illumination at 0 degrees C of treated membranes, the K-edge energy was up-shifted by 0.8 eV, but was not upon illumination at 210 K. These results were interpreted as indicating that extraction of weakly bound Ca2+ by low-pH treatment gives rise to structural and functional modulations of the Mn cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号