首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Physiological concentrations of either Ca2+ or Mg2+ stimulated L-glycerol 3-phosphate oxidation by intact mitochondria isolated from various mammalian tissues (hamster brown adipose tissue, rat brain, liver of normal and hyperthyroid rats). A higher cation concentration was required for stimulation by Mg2+ than by Ca2+. L-glycerol-3-phosphate dehydrogenase was the target of the stimulation by both cations as revealed by measurements with intact mitochondria as well as with the solubilized enzyme. With different electron acceptors Ca2+ and Mg2+ stimulation occurred at significantly different cation concentrations. 2. Substrate activation of mitochondrial L-glycerol-3-phosphate dehydrogenase was observed in intact mitochondria and with the solubilized enzyme isolated from hyperthyroid rats in the absence of Ca2+ and Mg2+. According to kinetic analysis two independent binding sites, functioning with different turnovers and with different affinities for the substrate, could account for the phenomenon. In the presence of Ca2+ or Mg2+ substrate activation could not be detected; the kinetic parameters apparently correspond to the tight substrate-binding site functioning with high turnover. 3. Thiol group(s), which in the absence of Ca2+ and Mg2+ did not participate in the functioning of the enzyme, played an essential role in the binding of these cations to the enzyme, as shown by chemical modification studies. 4. From the solubilized mitochondrial proteins L-glycerol-3-phosphate dehydrogenase was bound selectively to the hydrophobic phenyl-Sepharose 4B matrix in the presence Ca2+, and the bound enzyme could be eluted with EDTA. This suggests that Ca2+ caused an alteration in the conformation of the enzyme.  相似文献   

2.
1. The adsorption of [14C]carboxymethylated glyceraldehyde 3-phosphate dehydrogenase to negatively charged liposomes of phsphatidic acid/phosphatidylcholine (3:7, w/w) was investigated. The apparent association constant at I/2 = 60, pH 7.6, was 0.4 X 10(6)M-1. Adsorption decreased as ionic strength and pH were increased. 2. In the presence of negatively charged liposomes, the Km value for glyceraldehyde 3-phosphate of glyceraldehyde 3-phosphate dehydrogenase was increased and Vmax. decreased. In the presence of positively charged liposomes, the Km value for glyceraldehyde 3-phosphate decreased and there was no significant change in Vmax. Addition of Triton X-100 abolished the effect of both positively and negatively charged liposomes on the kinetic properties of the enzyme.  相似文献   

3.
6,7-Dideoxy-D-gluco-heptonic-7-phosphonic acid, the isosteric phosphonate analogue of gluconate 6-phosphate, was prepared by incubation of the corresponding analogue of glucose 6-phosphate with glucose 6-phosphate dehydrogenase and NADP+ in the presence of an enzyme NADPH-NADP+ recycling system. The analogue of gluconate 6-phosphate is a substrate for yeast gluconate 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH 7.5 and 8.0. At both pH values the Km values are approx. 3-fold higher and the Vmax. values approx. 7-fold lower than those of the natural substrate.  相似文献   

4.
Cytoplasmic alpha-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was 59,500 +/- 650 daltons; its subunit size was estimated to be 35,700 +/- 140 by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were 3.9 +/- 0.7 mM, 0.65 +/- 0.05 mM, 0.26 +/- 0.06 mM, and 0.005 +/- 0.0004 mM for L-glycerol-3-phosphate, NAD(+), DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were 2.30 +/- 0.21 mM and 0.20 +/- 0.01 mM for L-glycerol-3-phosphate and NAD(+), respectively. The turnover number, k(cat), of the forward reaction was 1.9 +/- 0.2 x 10(4)s(-1). The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that alpha-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.  相似文献   

5.
Rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase was shown to serve as a substrate for Ca2+/calmodulin-dependent protein kinase II with a Km of 0.33 microM and a Vmax of 2.63 mumol.min-1.mg-1 at pH 7.5 and 30 degrees C. In the absence of calmodulin, the Vmax was halved and Km unchanged. 0.99 mol of phosphate was incorporated per tetrameric molecule of D-glyceraldehyde-3-phosphate dehydrogenase under the experimental conditions employed.  相似文献   

6.
Changes in the enzymatic properties of horse liver alcohol dehydrogenase (HLADH; EC 1.1.1.1) were studied as a function of incubation time in Aerosol-OT/isooctane microemulsions. The enzyme was characterized by fluorimetric binding studies of the inhibitor isobutyramide to the binary complex, HLADH-NADH and by determination of Km,app and Vmax,app values for cyclohexanone. The Km,app values for cyclohexanone and the Kd,app for isobutyramide stay constant throughout a 48-h incubation, whereas the Vmax,app and the total number of inhibitor binding sites decrease. Thus the inactivation process previously described corresponds to progressive loss of functional sites, while the properties of the remaining functional sites are unchanged. If no co-enzyme is added to the system, the enzyme loses catalytic activity within less than an hour, but if co-enzyme is added, a fraction of the HLADH enzyme population retains enzyme activity over a long period of time. Hence the presence of bound co-enzyme significantly inhibits the process(es) leading to inactivation of the enzyme in the microemulsions.  相似文献   

7.
NAD-linked L-glycerol-3-phosphate dehydrogenase binds to phosphatidylcholine liposomes as shown by the changes in the properties of both the enzyme and the membrane. The surface potential and the fluidity of the liposome membrane (monitored at the 5th C atom depth) change due to the presence of the enzyme, whereas the enzyme is activated by the liposomes. These findings suggest the occurrence of peripheral protein-lipid interactions.  相似文献   

8.
By initial velocity measurements and two different methods of plotting the experimental data, the Km and Vmax of enzyme action and the first-order rate constant of substrate decomposition can be determined simultaneously under the same conditions. This method permits the determination of Km and Vmax even if the presence of the enzyme (or any impurity in the solutions used) influences the rate of substrate decomposition. The theoretical treatment was proved by determining the Michaelis-Menten parameters of D-glyceraldehyde-3-phosphate dehydrogenase and the first-order rate constant of hydrolysis of the unstable substrate, bisphosphoglycerate.  相似文献   

9.
Mitochondrial glycerol 3-phosphate dehydrogenase (EC 1.1.2.1.) requires Ca2+ ions for its activity. Cadmium ions also have activatory effect on the enzyme. They activate the glycerol 3-phosphate dehydrogenase in a very narrow concentration range (1-2 mmol/l). As contrasted with calcium, strong inhibitory effect occurred at higher concentrations (3-4 mmol/l). The inhibition induced by cadmium ions was completely reversible by washing of the mitochondria.  相似文献   

10.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   

11.
In human pregnancy, placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase produce progesterone from pregnenolone and metabolize fetal dehydroepiandrosterone sulfate to androstenedione, an estrogen precursor. The enzyme complex was solubilized from human placental microsomes using the anionic detergent, sodium cholate. Purification (500-fold, 3.9% yield) was achieved by ion exchange chromatography (Fractogel-TSK DEAE 650-S) followed by hydroxylapatite chromatography (Bio-Gel HT). The purified enzyme was detected as a single protein band in sodium dodecylsulfate-polyacrylamide gel electrophoresis (monomeric Mr = 19,000). Fractionation by gel filtration chromatography at constant specific enzyme activity supported enzyme homogeneity and determined the molecular mass (Mr = 76,000). The dehydrogenase and isomerase activities copurified. Kinetic constants were determined at pH 7.4, 37 degrees C for the oxidation of pregnenolone (Km = 1.9 microM, Vmax = 32.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.8 microM, Vmax = 32.0 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.7 microM, Vmax = 618.3 nmol/min/mg) and 5-androstene-3,17-dione (Km = 23.7 microM, Vmax = 625.7 nmol/min/mg). Mixed substrate analyses showed that the dehydrogenase and isomerase reactions use the appropriate pregnene and androstene steroids as alternative, competitive substrates. Dixon analyses demonstrated competitive inhibition of the oxidation of pregnenolone and dehydroepiandrosterone by both product steroids, progesterone and androstenedione. The enzyme has a 3-fold higher affinity for androstenedione than for progesterone as an inhibitor of dehydrogenase activity. Based on these competitive patterns of substrate utilization and product inhibition, the pregnene and androstene activities of 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase may be expressed at a single catalytic site on one protein in human placenta.  相似文献   

12.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

13.
The glucose-6-phosphatase dehydrogenase (EC 1.1.1.49) reaction of mouse organs was studied as affected by PPi and its diphosphonate analogs. It is shown that in vitro and hydroxy-1-ethane-1,1-diphosphonic acid) inhibit the mentioned enzyme of the mouse spleen and liver. The effect of hydroxyl-1-ethane-1,1-diphosphonic acid was used as an example to show that inhibition of glucose-6-phosphate dehydrogeanse by diphosphonates belongs to the mixed type characterized by changes in the Km and Vmax values. For the spleen enzyme Km equals 0.064 mM, Vmax - 4.7 Mg of NADPH per 1 mg of protein-1. h-1. Administration of methylene diphosphonic acid causes an inhibition in vivo of the glucose-6-phosphatase dehydrogenate activity of the liver but not of the spleen and thymus. Basing on the isoenzymic composition of the enzyme for the mentioned organs, it is possible to suppose that the difference in the methylene diphosphonic acid effect in the liver and lymphoid organs may depend on the differences in its isoenzymic spectrum. The fact that in vivo methylene diphosphonic acid in a dose having an immuno-depressive action has no influence on the activity of glucose-6-phosphatase dehydrogenase in the lymphoid organs, may evidence for the absence of the indirect immunodepressive effect of diphosphonate by affecting this enzyme.  相似文献   

14.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

15.
The membrane activity of Na+, K(+)-ATPase, Mg2+, Ca(2+)-ATPase, mitochondrial NAD-isocitrate dehydrogenase, mitochondrial and cytosolic L-glycerol-3-phosphate dehydrogenase was determined in the liver and brain of Wistar rats under acute hypoxic hypoxia against the background of preventive taurine administration. It was shown that preliminary taurine treatment prevented a decrease of hypoxia in activity of Na+. K(+)-ATPase and mitochondrial calcium-dependent enzymes, mostly in the liver. Changes in the intracellular calcium content and biomembrane structure have been discussed as the mechanisms of the taurine effect on the enzymes' activity.  相似文献   

16.
5 alpha-Cholest-8(14)-en-3 beta-yl-15-one oleate (15-ketosteryl oleate), the oleate ester of a compound with the capacity to lower serum cholesterol, was effectively hydrolyzed by partially purified porcine pancreatic cholesterol esterase with an apparent Km of 0.28 +/- 0.01 mM and a Vmax of 0.62 +/- 0.01 mumol/min per mg protein compared to an apparent Km of 0.19 +/- 0.02 mM and a Vmax of 0.37 +/- 0.02 mumol/min per mg protein for cholesteryl oleate. The 15-ketosteryl oleate was also hydrolyzed by highly purified rat pancreatic cholesterol esterase with an apparent Km of 0.20 +/- 0.01 mM and a Vmax of 86.7 +/- 3.0 mumol/min per mg protein compared to an apparent Km of 0.43 +/- 0.01 mM and a Vmax of 119.8 +/- 2.6 mumol/min per mg protein for cholesteryl oleate. 15-Ketosteryl oleate is, therefore, a good substrate for pancreatic cholesterol esterase from either source. The 15-ketosterol is a weak competitive inhibitor of partially purified porcine pancreatic cholesterol esterase when cholesteryl oleate is the substrate.  相似文献   

17.
The kinetic properties of Trypanosoma brucei brucei triose-phosphate isomerase are compared with those of the commercially available rabbit muscle and yeast enzymes and with published data on the chicken muscle enzyme. With glyceraldehyde 3-phosphate as substrate Km = 0.25 +/- 0.05 mM and kcat = 3.7 X 10(5) min-1. With dihydroxyacetone phosphate as substrate Km = 1.2 +/- 0.1 mM and kcat = 6.5 X 10(4) min-1. The pH dependence of Km and Vmax at 0.1 M ionic strength is in agreement with the results published for the yeast and chicken muscle enzymes. At ionic strength below 0.05 M the effect of a charged group specific for the trypanosomal enzyme and absent from the yeast and rabbit muscle enzymes becomes detectable. This effect significantly increases Km whereas Vmax becomes slightly higher. Trypanosomal triose-phosphate isomerase is inhibited by sulphate, phosphate and arsenate ions, by 2-phosphoglycolate and a number of documented inhibitors in the same concentration range as are the other triose-phosphate isomerases. The trypanocidal drug, Suramin inhibits T. brucei and rabbit muscle triose-phosphate isomerase to the same extent while leaving the yeast enzyme relatively unaffected.  相似文献   

18.
Glycerol-3-phosphate dehydrogenase from pig brain mitochondria was stimulated 2.2-fold by the addition of 50 microm l-ascorbic acid. Enzyme activity, dependent upon the presence of l-ascorbic acid, was inhibited by lauryl gallate, propyl gallate, protocatechuic acid ethyl ester, and salicylhydroxamic acid. Homogeneous pig brain mitochondrial glycerol-3-phosphate dehydrogenase was activated by either 150 microm L-ascorbic acid (56%) or 300 microm iron (Fe(2+) or Fe(3+) (62%)) and 2.6-fold by the addition of both L-ascorbic acid and iron. The addition of L-ascorbic acid and iron resulted in a significant increase of k(cat) from 21.1 to 64.1 s(-1), without significantly increasing the K(m) of L-glycerol-3-phosphate (10.0-14.5 mm). The activation of pure glycerol-3-phosphate dehydrogenase by either L-ascorbic acid or iron or its combination could be totally inhibited by 200 microm propyl gallate. The metabolism of [5-(3)H]glucose and the glucose-stimulated insulin secretion from rat insulinoma cells, INS-1, were effectively inhibited by 500 microm or 1 mm propyl gallate and to a lesser extent by 5 mm aminooxyacetate, a potent malate-aspartate shuttle inhibitor. The combined data support the conclusion that l-ascorbic acid is a physiological activator of mitochondrial glycerol-3-phosphate dehydrogenase, that the enzyme is potently inhibited by agents that specifically inhibit certain classes of di-iron metalloenzymes, and that the enzyme is chiefly responsible for the proximal signal events in INS-1 cell glucose-stimulated insulin release.  相似文献   

19.
In mammalian cells, increases in calcium concentration cause increases in oxidative phosphorylation. This effect is mediated by the activation of four mitochondrial dehydrogenases by calcium ions; FAD-glycerol 3-phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol 3-phosphate dehydrogenase, being located on the outer surface of the inner mitochondrial membrane, is exposed to fluctuations in cytoplasmic calcium concentration. The other three enzymes are located within the mitochondrial matrix.While the kinetic properties of all of these enzymes are well characterised, the molecular basis for their regulation by calcium is not. This review uses information derived from calcium binding studies, analysis of conserved calcium binding motifs and comparison of amino acid sequences from calcium sensitive and non-sensitive enzymes to discuss how the recent cloning of several subunits from the four dehydrogenases enhances our understanding of the ways in which these enzymes bind calcium. FAD-glycerol 3-phosphate dehydrogenase binds calcium ions through a domain which is part of the polypeptide chain of the enzyme. In contrast, it is possible that the calcium sensitivity of the other dehydrogenases may involve separate calcium binding subunits.  相似文献   

20.
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号