首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

2.
Properties of sialidase isolated from Actinomyces viscosus DSM 43798   总被引:1,自引:0,他引:1  
The cell-bound sialidase of Actinomyces viscosus DSM 43798 was solubilized by mechanical cell disruption and lysozyme treatment. The enzyme was enriched 30,000-fold by cation-exchange chromatography, gel-filtration, and FPLC ion-exchange chromatography, thus obtaining 10 micrograms sialidase protein from 26 g wet cells with a specific activity of 680 U/mg protein. Since sialidase activity was also found in the culture medium, this enzyme was isolated as well, requiring the additional application of FPLC gel-filtration. Both sialidase preparations were apparently homogenous on SDS-PAGE and have similar properties. The substrate specificity of the A. viscosus sialidase was tested with 16 sialoglycoconjugates: The enzyme showed a higher activity with serum glycoproteins than with gangliosides, mucins or sialyllactoses. 4-O-Acetylated N-acetylneuraminic acid was not cleaved from equine submandibular gland mucins or serum glycoproteins in contrast to N-acetyl- and N-glycoloylneuraminic acid. 9-O-Acetyl-N-acetylneuraminic acid was released from bovine submandibular gland mucin, as confirmed by TLC. The sialidase hydrolyses alpha(2----6)-linkages more rapidly than alpha(2----8)- and alpha(2----3)-bonds. Cations, except Hg2+, or chelating agents have no influence on enzyme activity. The sialidase has a relatively high molecular mass of 150 kDa, but consists of only one unit. The enzyme is labile towards freezing and thawing, but can be stored at 4 degrees C in 0.1 M acetate buffer, pH 5.  相似文献   

3.
A modified high pressure liquid chromatographic method using lactose (Gal beta 1----4Glc) as an exogenous acceptor has been used to characterize the sialyltransferases known to increase in the serum of colchicine-treated rats. The results show a 10-fold increase of Gal beta 1----4GlcNAc alpha 2----6 sialyltransferase (alpha 2----6 ST), whereas the Gal beta 1----3GlcNAc alpha 2----3 sialyltransferase showed only 1.6-fold increase in the serum after 17 h of colchicine treatment. The sialyltransferase activity in serum using exogenous desialylated, alpha 1-acid glycoprotein as acceptor also showed an eightfold increase. In liver homogenate and Golgi membrane, the sialyltransferase activity when assayed with desialylated alpha 1-acid glycoprotein as acceptor showed a slight decrease after 4 h, but returned to normal level after 17 h. A similar trend was seen when the two transferases were assayed with lactose as acceptor. The antiserum to rat alpha 2----6 ST inhibited the sialyltransferase activity in serum, liver, and jejunal incubation medium. Jejunal sections from rats treated with colchicine for 4 h in presence of heated serum showed a decrease of sialyltransferase, with consequent increase of the alpha 2----6 ST enzyme activity in the medium. This result suggests that intestinal tissue could be a source of increased serum enzyme activity in colchicine treatment.  相似文献   

4.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

5.
The development of an enzyme-linked immunosorbent assay (ELISA) for uridine 5'-diphospho-N-acetyl-glucosamine: alpha mannoside beta 1----6 N-acetylglucosaminyltransferase (GnT-V) is reported. The assay quantitates the enzymatic conversion of the specific synthetic GnT-V acceptor GlcNAc beta 1----2Man alpha 1----6Man beta-R (5) to the product GlcNAc beta 1----2[GlcNAc-beta 1----6]Man alpha 1----6Man beta-R (6) when these oligosaccharide structures were covalently attached to bovine serum albumin which was then coated on microtiter wells. Conversion of 5 to 6 was detected using a polyclonal antiserum raised against the product 6 and from which antibodies cross-reacting with acceptor 5 had been removed by affinity adsorption. GnT-V activity detected by ELISA was linearly proportional to both enzyme concentration and time under appropriate experimental conditions where 50-300 fmol of product was formed per microtiter well. GnT-V activity could be measured by ELISA in Triton X-100 extracts of hamster kidney acetone powder and in human serum. The twofold increase in GnT-V activity which is known to accompany Rous sarcoma virus transformation of baby hamster kidney cells could also be quantitated using the ELISA.  相似文献   

6.
Plaque morphology indicated that the five Escherichia coli K1-specific bacteriophages (A to E) described by Gross et al. (R. J. Gross, T. Cheasty, and B. Rowe, J. Clin. Microbiol. 6:548-550, 1977) encode K1 depolymerase activity that is present in both the bound and free forms. The free form of the enzyme from bacteriophage E was purified 238-fold to apparent homogeneity and in a high yield from ammonium sulfate precipitates of cell lysates by a combination of CsCl density gradient ultracentrifugation, gel filtration, and anion-exchange chromatography. The enzyme complex had an apparent molecular weight of 208,000, as judged from its behavior on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was dissociated by sodium dodecyl sulfate at 100 degrees C to yield two polypeptides with apparent molecular weights of 74,000 and 38,500. Optimum hydrolytic activity was observed at pH 5.5, and activity was strongly inhibited by Ca2+; the Km was 7.41 X 10(-3) M. Rapid hydrolysis of both the O-acetylated and non-O-acetylated forms of the K1 antigen, an alpha 2----8-linked homopolymer of N-acetylneuraminic acid, and of the meningococcus B antigen was observed. Limited hydrolysis of the E. coli K92 antigen, an N-acetylneuraminic acid homopolymer containing alternating alpha 2----8 and alpha 2----9 linkages, occurred, but the enzyme failed to release alpha 2----3-, alpha 2----6-, or alpha 2----9-linked sialic residues from a variety of other substrates.  相似文献   

7.
A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(alpha 2----3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65 degrees C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 X 10(-6) M versus 6.3 X 10(-6) M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 X 10(-4) M and 4.3 X 10(-4) M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The "delipidated enzyme" could hydrolyze fetuin, NL, and ganglioside substrates, including GM1 and GM2. When the delipidated enzyme was exposed to high temperature (55 degrees C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1 also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.  相似文献   

8.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

9.
We present evidence for the existence in rat brain of several sialyltransferases able to sialylate sequentially asialofetuin. [14C]Sialylated glycans of asialofetuin were analyzed by gel filtration. Three types of [14C]sialylated glycans were synthesized: N-glycans and monosialylated and disialylated O-glycans. The varying effects of N-ethylmaleimide, lysophosphatidylcholine (lysoPtdCho) and trypsin, were helpful in the identification of these different sialyltransferases. One of them, selectively inhibited by N-ethylmaleimide, was identified as the Neu5Ac alpha 2----3Gal beta 1----3GalNAc-R:alpha 2----6 sialyltransferase previously described [Baubichon-Cortay, H., Serres-Guillaumond, M., Louisot, P. and Broquet, P. (1986) Carbohydr. Res. 149, 209-223]. This enzyme was responsible for the synthesis of disialylated O-glycans. LysoPtdCho and trypsin selectively inhibited the enzyme responsible for the synthesis of monosialylated O-glycan. N-ethylmaleimide, lysoPtdCho and trypsin did not inhibit Neu5Ac transfer onto N-glycans, giving evidence for three different molecular species. To identify the enzyme responsible for monosialylated O-glycan synthesis, we used another substrate: Gal beta 1----3GalNAc--protein obtained after galactosylation of desialylated ovine mucin by a GalNAc-R:beta 1----3 galactosyltransferase from porcine submaxillary gland. This acceptor was devoid of N-glycans and of NeuAc in alpha 2----3 linkages on the galactose residue. When using N-ethylmaleimide we obtained the synthesis of only one product, a monosialylated structure. After structural analysis by HPLC on SAX and SiNH2 columns, we identified this product as Neu5Ac alpha 2----3Gal beta 1----3GalNAc. The enzyme leading to synthesis of this monosialylated O-glycan was identified as a Gal beta 1----3GalNAc-R:alpha 2----3 sialyltransferase. When using lysoPtdCho and trypsin, sialylation was completely abolished, although the Neu5Ac alpha 2----3Gal beta 1----3GalNAc-R:alpha 2----6 sialyltransferase was not inhibited. We provided thus evidence for the interpendence between the two enzymes, the alpha 2----3 sialyltransferase regulates the alpha 2----6 sialyltransferase activity since it synthesizes the alpha 2----6 sialyltransferase substrate.  相似文献   

10.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

11.
The reactivities of eight purified preparations of carcinoembryonic antigen with monoclonal antibodies directed to tumor-associated carbohydrate determinants have been studied. All eight preparations showed strong reactivities with AH6, which defines Y structure (Fuc alpha 1----2Gal beta 1----4[Fuc alpha 1----3] GlcNAc beta 1----R), whereas only a few preparations showed reactivity with FH4-defining dimeric X determinants, (Gal beta 1----4 [Fuc alpha 1----3]GlcNAc beta 1----3Gal beta 1----4 [Fuc alpha 1----3]GlcNA beta 1----3Gal beta 1----R). No other antibodies tested showed any reactivity with these preparations. These carbohydrate markers associated with carcinoembryonic antigen will be useful to enhance the diagnostic value of the antigen.  相似文献   

12.
Many human carcinomas accumulate a large quantity of glycolipids having X (Gal beta 1----4[Fuc alpha 1----3] GlcNAc) as well as di- or trimeric X determinant (Gal beta 1----4 [Fuc alpha 1----3] GlcNAc beta 1----3Gal beta 1----4 [Fuc alpha 1----3]GlcNAc beta 1----3Gal) (e.g. Hakomori, S., Nudelman, E., Levery, S. B., and Kannagi, R. (1984) J. Biol. Chem. 259, 4672-4680). The enzymatic basis of this phenomenon has been investigated with human small cell lung carcinoma NCI-H69 cells, in which a series of these structures has been found to accumulate. An alpha 1----3 fucosyltransferase solubilized from the membrane fraction with Triton X-100 catalyzed not only the transfer of a fucosyl residue from GDP-fucose to the penultimate GlcNAc residue of lactoneotetraosylceramide (nLc4) and lactonorhexaosylceramide (nLc6), but also to the internal GlcNAc residue (III-GlcNAc) of y2 glycolipid (V3FucnLc6) and that of sialosyl2----6lactonorhexaosylceramide (VI6NeuAcnLc6). No transfer of fucose to the internal GlcNAc (III-GlcNAc) of lactonorhexaosylceramide occurred, unless the above substitutions (V3Fuc or VI6NeuAc) were present. Fucosylation at V-GlcNAc and III-GlcNAc of nLc6 could be catalyzed by the same enzyme, based on the following observations: (i) fucosylation at both III- and V-GlcNAc was competitively inhibited by V3FucnLc6 and III3V3Fuc2nLc6; (ii) the same conditions (pH, bivalent cation, detergent) were optimal for fucosylation at both III- and V-GlcNAc; (iii) the Km values of the enzyme for nLc4, nLc6, and V3FucnLc6 were approximately the same; and (iv) the activity of the enzyme catalyzing fucosylation at both III- and V-GlcNAc was adsorbed on GDP-hexanolamine-Sepharose and was not inhibited by N-ethylmaleimide. The enzyme preferentially transferred fucose to the penultimate VGlcNAc, followed by transfer to the internal III-GlcNAc of nLc6. Thus, the pathway for synthesis of dimeric X proceeds as follows: nLc6----V3FucnLc6----III3V3Fuc2nLc6. No mechanism was found to operate for chain elongation of the X hapten structure through addition of GlcNAc residues to the terminal Gal of the X hapten.  相似文献   

13.
Congenital dyserythropoietic anemia type II or hereditary erythroblastic multinuclearity with positive acidified serum test (HEMPAS) is a genetic disease caused by membrane abnormality. Previously we have found that Band 3 and Band 4.5 are not glycosylated by lactosaminoglycans in HEMPAS erythrocytes, whereas normally these proteins have lactosaminoglycans (Fukuda, M. N., Papayannopoulou, T., Gordon-Smith, E. C., Rochant, H., and Testa, U. (1984) Br. J. Haematol. 56, 55-68). In order to find out where glycosylation of lactosaminoglycans stops, we have analyzed the carbohydrate structures of HEMPAS Band 3. By fast atom bombardment-mass spectrometry, methylation analysis, and hydrazinolysis followed by exoglycosidase treatments, the following structure was elucidated: (formula; see text) N-Linked glycopeptides synthesized in vitro by reticulocyte microsomes from HEMPAS were shown to be predominantly the above short oligosaccharide, whereas those from normal reticulocytes contain large molecular weight carbohydrates. The N-acetylglucosaminyltransferase II, which transfers N-acetylglucosamine to the C-2 position of the Man alpha 1----6Man beta 1----arm of the biantennary core structure, was therefore examined by using Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcol as an acceptor. N-Acetylglucosaminyltransferase II activity was demonstrated in the lymphocyte microsome fraction from normal individuals. However, this enzyme activity was found to be decreased in those from HEMPAS patients. These results suggest that the primary defect of HEMPAS lies in the lowered activity of N-acetylglucosaminyltransferase II.  相似文献   

14.
Endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae was shown to have transglycosylation and transfer reaction (reversed hydrolysis) activities. Treatment of asialoglycoproteins having Gal beta 1----3GalNAc alpha 1----Ser/Thr linkages with enzyme preparations containing glycerol resulted in formation of nonreducing trisaccharides. The structure of the main trisaccharide (approximately 80%) was deduced to be Gal beta 1----3GalNAc alpha 1----1(3)-glycerol by analysis of sugar composition and the results of exoglycosidase treatment and periodate oxidation. The ability of the endoglycosidase to catalyze transfer of Gal beta 1----3GalNAc to various acceptors was also demonstrated by incubation of the enzyme with the disaccharide and the test compound. The following were found to show acceptor activity: glycerol, Tris, p-nitrophenol, threonine, serine, D-glucose, D-galactose, D-fucose, and 6-O-methylgalactose. Transfer to the primary hydroxyl groups of glycerol and hexoses appears to be favored since the major glycerol product was 1(3)-substituted and transfer to D-fucose and 6-O-methyl-D-galactose was less than that to D-galactose. In order to avoid spurious results, it is necessary to carry out incubations with this enzyme in the absence of glycerol and other hydroxy compounds. The potential use of this endoglycosidase in the synthesis of glycosides is indicated by our studies.  相似文献   

15.
A novel lysosomal alpha-mannosidase, with unique substrate specificity, has been partially purified from human spleen by chromatography through concanavalin A-Sepharose, DEAE-Sephadex, and Sephacryl S-300. This enzyme can catalyze the hydrolysis of only 1 mannose residue, that which is alpha(1----6)-linked to the beta-linked mannose in the core of N-linked glycans, as found in the oligosaccharides Man alpha(1----6)[Man alpha(1----3)] Man beta(1----4)GlcNAc and Man alpha(1----6)Man beta(1----4) GlcNAc. The newly described alpha-mannosidase does not catalyze the hydrolysis of mannose residues outside of the core, even if they are alpha(1----6)-linked, and is not active on the other alpha-linked mannose in the core, which is (1----3)-linked. The narrow specificity of the novel mannosidase contrasts sharply with that of the major lysosomal alpha-mannosidase, which is able to catalyze the degradation of oligosaccharides containing diverse linkage and branching patterns of the mannose residues. Importantly, although the major mannosidase readily catalyzes the hydrolysis of the core alpha(1----3)-linked mannose, it is poorly active towards the alpha(1----6)-linked mannose, i.e. the very same mannose residue for which the newly characterized mannosidase is specific. The novel enzyme is further differentiated from the major lysosomal alpha-mannosidase by its inability to catalyze the efficient hydrolysis of the synthetic substrate p-nitrophenyl alpha-mannoside, and by the strong stimulation of its activity by Co2+ and Zn2+. Similarly to the major mannosidase, it is strongly inhibited by swainsonine and 1,4-dideoxy-1,4-imino-D-mannitol, but not by deoxymannojirimycin. The presence of this novel alpha-mannosidase activity in human tissues provides the best explanation, to date, for the structures of the oligosaccharides stored in human alpha-mannosidosis. In this condition the major lysosomal alpha-mannosidase activity is severely deficient, but apparently the alpha(1----6)-mannosidase is unaffected, so that the oligosaccharide structures reflect the unique specificity of this enzyme.  相似文献   

16.
The pathway for synthesis of three glycosphingolipids bearing a common sialyl-Lex determinant (NeuAc alpha 2----3Gal beta 1----4[Fuc alpha 1----3]GlcNac beta 1----R) from their type 2 lactoseries precursors has been studied using the 0.2% Triton X-100-soluble fraction from human lung carcinoma PC9 cells. Two enzymes were found to be required for their synthesis: (i) an alpha 1----3 fucosyltransferase, the properties of which have been characterized as being similar to the enzyme from human small cell lung carcinoma NCI-H69 cells (Holmes, E. H., Ostrander, G. K., and Hakomori, S. (1985) J. Biol. Chem. 260, 7619-7627); and (ii) an alpha 2----3 sialyltransferase that was efficiently solubilized by 0.2% Triton X-100 and required divalent metal ions and 0.3% Triton CF-54 for optimal activity at pH 5.9 in cacodylate buffer. Biosynthesis of the sialyl-Lex determinant was shown to proceed via sialylation of nLc6 and nLc4, followed by alpha 1----3 fucosylation at the penultimate GlcNAc residues, based on the following: (i) transfer of NeuAc by PC9 cell sialyltransferase was found only when the nonfucosylated acceptors nLc4 and nLc6 were added, and none of the glycolipids with Lex structure (III3FucnLc4; V3FucnLc6; III3V3Fuc2nLc6) were sialylated; and (ii) the PC9 cell fucosyltransferase was active with both neutral and ganglioside neolacto (type 2 chain) acceptors. Transfer of fucose to VI3NeuAcnLc6 yielded mono- and difucosyl derivatives, whereas only a monofucosyl derivative was obtained when VI6NeuAcnLc6 was the acceptor. This is most probably due to different conformations at the terminus of the two acceptor gangliosides. The fucosyltransferase was incapable of transferring fucose to sialyl 2----3 lactotetraosylceramide (IV3NeuAcLc4).  相似文献   

17.
The human serum enzyme, beta-galactoside alpha 1----2 fucosyltransferase, presumably blood group H gene-encoded, was purified to homogeneity from serum of AB and mixed secretor phenotype individuals. The purification procedure involved chromatography on phenyl-Sepharose, S-Sepharose, GDP-hexanolamine-Sepharose, and high pressure liquid chromatography gel filtration. The enzyme was purified 10 x 10(6)-fold, with a final specific activity of 23.6 units/mg for the phenyl-beta-O-galactoside acceptor. The apparent Mr of the H gene-encoded beta-galactoside alpha 1----2 fucosyltransferase was determined as 200,000 and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in nonreducing and reducing conditions, respectively. The Mr of native enzyme was found by gel filtration chromatography to be 148,000. The subunit structure as well as the sensitivity of the enzymatic activity to beta-mercaptoethanol suggest that the native enzyme exists in polymeric form of covalently bound subunits. Lectin binding properties of the purified molecule indicate that the enzyme is glycosylated. Another human serum beta-galactoside alpha 1----2 fucosyltransferase, presumably Se gene-encoded, was separated from the H enzyme by adsorption on S-Sepharose cation exchange matrix. A comparison of the kinetic parameters of the initial rate data of both alpha 1----2 fucosyltransferases revealed differences between Km values for various oligosaccharide acceptors. Higher Km values for the phenyl-beta-O-galactoside acceptor and a lower Km for the lacto-N-tetraose-beta-O-PA8 type 1 acceptor for the enzyme that adsorbed to S-Sepharose compared with nonadsorbed enzyme were observed. The two enzymes also were differentiated by binding properties to S-Sepharose and electrophoretic mobilities on native gel electrophoresis. We, therefore, postulate that the enzyme which does not adsorb to S-Sepharose and adsorbed enzyme are structurally different molecules and they represent the H and Se gene-encoded beta-galactoside alpha 1----2 fucosyltransferases, respectively.  相似文献   

18.
An enzyme activity that catalyzes hydrolysis of an alpha-(1----4)-linked 6-O-methyl-D-glucan was detected in, and purified from, Rhizopus oryzae mold. The enzyme acts like an alpha amylase and digests unmodified amylo-oligosaccharides 10 to 15 times as fast as it does the 6-O-methyl and 6-deoxy derivatives. When the limit product obtained by digesting the mycobacterial O-methyl-D-glucose polysaccharide with pancreatic alpha amylase and Aspergillus glucoamylase was further digested with the Rhizopus alpha amylase, di-, tri-, and tetra-saccharide fragments composed of alpha-(1----4)-linked 6-O-methyl-D-glucose were released. The rest of the molecule was recovered as oligosaccharides terminated by two, or three, alpha-(1----4)-linked 6-O-methyl-D-glucose residues.  相似文献   

19.
Human chorionic gonadotrophin (hCG) is a heterodimeric glycoprotein hormone consisting of an alpha- and a beta-subunit, both containing two N-linked, complex-type glycans. Using this hormone as a model glycoprotein, the influence of its polypeptide part on the activity and specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase (alpha 6-sialyltransferase) was investigated. Initial rates of sialic acid incorporation into the desialylated glycans of hCG alpha and hCG beta in the heterodimer were higher with the alpha-subunit. This appeared to be due to a higher V which, together with a slightly lowered affinity (higher Km), resulted in a higher kinetic efficiency of the sialyltransferase for the glycans of this subunit. By contrast, the kinetic parameters did not differ significantly when the subunits were in the free form, indicating that the differences in the kinetics of sialylation found for the subunits in the heterodimeric state were not caused by the differences in N-linked carbohydrate structures of the subunits. It is proposed that these effects are due to conformational constraints which the polypeptide moieties put on the glycan chains upon dimerization. Furthermore, it was investigated whether the polypeptide of hCG would interfere with the sialyltransferase so as to alter the branch specificity of the enzyme. 1H-NMR spectroscopy (400 MHz) of the glycan chains, alpha 6-sialylated in vitro, showed that the enzyme highly prefers the galactosyl residue at the Gal beta 1----4GlcNAc beta 1----2-Man alpha 1----3Man branch for attachment of the first mol of sialic acid into the diantennary glycans of desialylated hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Glucan synthesis in Pneumocystis carinii.   总被引:5,自引:0,他引:5  
Rat-derived Pneumocystis carinii lysed with sodium deoxycholate catalysed the incorporation of uridine diphosphoglucose into an insoluble polymer. This enzyme activity was present in both the pellet and the supernatant when the P. carinii preparations were centrifuged. The polymer whose production was catalysed by the supernatant was examined by mass spectrometry and found to be an alpha 1----4 glucan, which is either unbranched or has relatively few branches. Polymer formation was completely inhibited by the addition of alpha amyloglucohydrolase to the supernatant. Polymer formation in the pellet of deoxycholate P. carinii preparations, unlike that in the supernatant, was partially resistant to alpha amyloglucohydrolase. The soluble glucan synthase activity in the supernatant was stable for more than 30 h at room temperature and was approximately 50 times more active on a cell-to-cell basis than the supernatant from deoxycholate preparations of the yeast Saccharomyces cerevisae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号