首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsomes were isolated from livers of fed male and female rats and the rates of incorporation of sn-[14C]-glycerol-3-phosphate into phosphatidate, diacylglycerol and triacylglycerol by the microsomes were measured. Simultaneously, microsomal ATP-dependent uptake of calcium was evaluated and correlated with synthesis of phosphatidate from sn-glycerol-3-phosphate. The rate of glycerolipid synthesis by hepatic microsomes from female rats was greater than that of microsomes from male rats. By contrast, the active accumulation of calcium and subsequent inhibition of synthesis of phosphatidate from glycerol-3-phosphate was lower in microsomes from livers of female rats than from male animals. This reciprocal relationship between uptake of calcium and incorporation of sn-glycerol-3-phosphate into phosphatidate as reported earlier (Biochem. Biophys. Res. Commun. 78, 1053–1059 (1977)) may, in part, be responsible for the differences in the rates of hepatic triacylglycerol synthesis between livers from male and female rats.  相似文献   

2.
The relative significance of alterations in precursor supply and enzyme activities for the rate of triacylglycerol synthesis was studied in isolated hepatocytes and perfused livers. Precursor availability was varied in vitro by changing the fatty acid concentration in the incubation medium or adding ethanol to the perfusion medium in order to increase the cellular glycerol 3-phosphate concentration. The rate of glycerolipid synthesis in hepatocytes, measured in terms of the label incorporated into the various lipid classes from tritiated glycerol, was strongly dependent on the fatty acid concentration up to 2 mm of oleate (fatty acid/albumin molar ratio 71). Ethanol in vitro increased the incorporation of labeled oleate into phosphatidic acid and diacylglycerol in the isolated perfused liver, but its effect on the incorporation into triacylglycerol was small. Ethanol in vitro increased the label incorporation into both diacylglycerol and triacylglycerol in the livers from cortisol-treated rats. Although cortisol treatment increased the soluble phosphatidate phosphohydrolase activity 4.4-fold in the hepatocytes, it had no effect on the rate of triacylglycerol synthesis, whereas fasting increased this rate about 3-fold, although only a moderate concomitant increase in soluble phosphatidate phosphohydrolase activity was observed. Neither cortisol treatment nor fasting affected the microsomal glycerol-3-phoshate acyltransferase activity. The results demonstrate that substrate availability can override enzyme modulations in the regulation of triacylglycerol synthesis and that phosphatidate phosphohydrolase is not the main regulator of triacylglycerol synthesis.  相似文献   

3.
Bodo Liedvogel  Hans Kleinig 《Planta》1979,144(5):467-471
Isolated chromoplasts from Narcissus pseudonarcissus flowers contain: a fatty acid synthesizing system; acyl-CoA synthetase (EC 6.2.1.3); glycero-phosphate acyltransferase (EC 2.3.1.15); acylglycero-phosphate acyltransferase; phosphatidate phosphatase (EC 3.1.3.4); diacylglycerol galactosyltransferase (EC 2.4.1.46); and diacylgalactosylglycerol galactosyltransferase, i.e. all enzymatic activities necessary for the synthesis of diacylgalactosylglycerol and diacylgalabiosylglycerol from acetate, HCO - 3 , sn-glycerol 3-phosphate, and UDP-d-galactose. Diacylgalactosylglycerol and diacylgalabiosylglycerol, however, are synthesized from these precursors to only a very low extent in an in vitro system. This is attributed to a specificity of diacylglycerol galactosyltransferase for highly unsaturated diacylglycerols. Specificities of acyltransferase reactions were also found.  相似文献   

4.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

5.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

6.
Triacylglycerols of both Tropaeolum majus L. and Limnanthes douglasii R. Br. are predominantly esterified with very long-chain acyl groups at each position of the glycerol backbone. In order to elucidate whether these acyl groups are directly chanelled into the triacylglycerols via the stepwise acylation of glycerol-3-phosphate, seed oil formation has been investigated in developing embryos of both plant species. [1-14C]Acetate labelling experiments using embryos at different stages of development, as well as the determination of the properties of the microsomal acyl-CoA:sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) and acyl-CoA:sn-1-acylglycerol-3-phosphate acyltransferase (EC 2.3.1.51), revealed differences between the two plant species, especially with respect to the incorporation of very longchain acyl groups into the C2 position of the triacylglycerols. In microsomal fractions of developing embryos of L. douglasii both a glycerol-3-phosphate and a 1-acylglycerol-3-phosphate acyltransferase were detected which utilize very long-chain acyl-CoA thioesters as substrates. Thus, in seeds of L. douglasii very long-chain acyl groups can enter not only the C1, but also the C2 position of the triacylglycerols in the course of de-novo biosynthesis. A comparison of the properties of the acyltransferases of developing embryos with those of the corresponding activities of leaves indicates an embryo specific expression of an erucoyl-CoA-dependent microsomal 1-acylglycerol-3-phosphate acyltransferase in L. douglasii. The microsomal glycerol-3-phosphate acyltransferase of developing embryos of T. majus displayed properties very similar to those of the corresponding activity of L. douglasii. On the other hand, the microsomal 1-acylglycerol-3-phosphate acyltransferases of the two plant species showed strikingly different substrate specificities. Irrespective of the acyl groups of 1-acylglycerol-3-phosphate and regardless of whether acyl-CoA thioesters were offered separately or in mixtures, the enzyme of T. majus, in contrast to that of L. douglasii, was inactive with erucoyl-CoA. These results of the enzyme studies correspond well with those of the [1-14C]acetate labelling experiments and thus indicate that T. majus has developed mechanisms different from those of L. douglasii for the incorporation of erucic acid into the C2 position of its triacylglycerols.Abbreviations GPAT acyl-CoA:sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) - LPAT acyl-CoA:sn-1-acylglycerol-3-phosphate acyltransferase (EC 2.3.1.51) This work was supported by the Bundesministerium für Forschung und Technologie (Förderkennzeichen 0316600A).  相似文献   

7.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of thease enzymes are located on the external surface of microsomal vesicles. It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

8.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of these enzymes are located on the external surface of microsomal vesicles.It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

9.
Activities of phosphatidate phosphohydrolase and palmitoyl-CoA hydrolase were determined in cardiac subcellular fractions prepared from rabbits which has received tri-iodothyronine and from hamsters with hereditary cardiomyopathy (strain BIO 14.6). 1. Both mitochondrial and microsomal fractions of hyperthyroid rabbit hearts produced 4-5 times as much diacylglycerol 3-phosphate from glycerol 3-phosphate and palmitate as did those of euthyroid hearts. 2. Phosphatidate phosphohydrolase, measured with phosphatidate emulsion, was activated by 1mm-Mg(2+) in all but the mitochondrial fraction of euthyroid rabbit hearts. The activation was more pronounced in subcellular fractions isolated from hyperthyroid hearts, so that the measured activities were significantly increased above those of the controls. The highest activity was found in the microsomal and lysosomal fractions. 3. In the absence of Mg(2+) during incubation, the difference in phosphohydrolase activities between eu- and hyper-thyroid states was not significant. 4. The phosphohydrolase of subcellular fractions of control hamsters did not respond to addition of 0.5-8.0mm-Mg(2+). The enzyme from cardiomyopathic hearts was slightly inhibited by this bivalent cation and therefore significant increases in activity were observed only in the absence of Mg(2+) from the assay system. 5. The rate of reaction by soluble phosphatidate phosphohydrolase was similar regardless of the nature of the substrate. Both when microsomal-bound phosphatidate was used as the substrate and when phosphatidate suspension was used, the activity of soluble enzyme was lower than that of the microsomal and lysosomal enzymes measured with phosphatidate suspension; this was especially so when the assay was carried out in the absence of Mg(2+). Neither tri-iodothyronine nor cardiomyopathy influenced the soluble phosphohydrolase activity in the two species. 6. Neither tri-iodothyronine nor cardiomyopathy significantly changed palmitoyl-CoA hydrolase activities in subcellular fractions. 7. Microsomal diacylglycerol acyltransferase and myocardial triacylglycerol content were also unchanged in the hyperthyroid state.  相似文献   

10.
1. Male rats were fed for 14 days on diets containing (by wt.) 53% of starch, or on diets in which 20% of the starch was replaced by sucrose, corn oil or lard. 2. The hepatic activities of the microsomal glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase and choline phosphotransferase, and of the soluble phosphatidate phosphohydrolase, were measured. 3. The soluble phosphatidate phosphohydrolase activity was higher in those rats fed on lard than in those fed on the starch diet. Choline phosphotransferase activity was higher in the rats fed on corn oil than in those fed on the starch diet. 4. The rate of hepatic glycerolipid synthesis was measured in vivo 1 min after injection of [1,3-3H]glycerol and [1-14C]palmitate into the portal veins. 5. The relative rate of phosphatidylcholine synthesis in vivo was increased after feeding with corn oil and the higher specific activity of choline phosphotransferase may contribute to this result. The equivalent rate of triacylglycerol synthesis was increased by feeding with lard rather than corn oil, and the increased activity of phosphatidate phosphohydrolase may partly explain this. The latter changes probably contribute to the increased concentration of triacylglycerol which other authors have observed in the livers and sera of animals fed on saturated and monounsaturated fats.  相似文献   

11.
The mechanism behind ethanol-induced fatty liver was investigated by administration of [1,1-2H2]ethanol to rats and analysis of intermediates in lipid biosynthesis. Phosphatidic acid and phosphatidylcholine were isolated by chromatography on a lipophilic anion exchanger and molecular species were isolated by high-performance liquid chromatography in a non-aqueous system. The glycerol moieties of palmitoyl-linoleoylphosphatidic acid, the corresponding phosphatidylcholine and free sn-glycerol-3-phosphate were analysed by GC/MS of methyl ester t-butyldimethylsilyl derivatives. The deuterium labelling in the glycerol moiety of the phosphatidic acid was 2–3-times higher than in free sn-glycerol-3-phosphate, indicating that a specific pool of sn-glycerol-3-phosphate was used for the synthesis of phosphatidic acid in liver. The results indicate that NADH formed during ethanol oxidation is used in the formation of a pool of sn-glycerol-3-phosphate that gives rise to triacylglycerol and possibly fatty liver.  相似文献   

12.
R.J. Porra 《Phytochemistry》1979,18(10):1651-1656
Cell-free homogenates of soybean cotyledons contain a sn-glycerol-3-phosphate acyltransferase system which incorporated [U-14C]-sn-glycerol-3-phosphate into 5 labelled lipids when incubated with palmitic acid in the presence of ATP and CoA. In decreasing order of incorporation of label, the lipids were: lysophosphatidic acid, monoacylglycerol, phosphatidic acid, diacylglycerol and triacylglycerol. The substrate specificity of the acyltransferase system was investigated with the fatty acids shown in order of decreasing rates of reaction; palmitate > stearate > oleate > linoleate > linolenate > laurate. Making these acids more soluble as triethanolamine salts or as polyoxyethylene sorbitan esters did not greatly enhance these rates of reaction. Activity was found in a 10000 g pellet containing plastids, mitochondria and glyoxysomes and also in the lipid layer; the activity in these particulate fractions was enhanced by the addition of cytosol which itself had little activity when gentle methods of cell disruption were used. During cotyledon development the total acyltransferase activity increased, although its specific activity slowly declined due to more rapid synthesis of other proteins. During germination total activity decreased but there was a transient increase in specific activity due to more rapid degradation of other proteins.  相似文献   

13.
Microsomal phosphatidate phosphatase in maturing safflower seeds   总被引:4,自引:0,他引:4       下载免费PDF全文
An assay system comprising sodium phosphatidate, phosphatidylcholine, and bovine serum albumin has been developed for the reproducible determination of phosphatidate phosphatase activity in maturing seeds of safflower (Carthamus tinctorius L.). The activity was detected in both membrane and soluble fractions, and the microsomal phosphatidate phosphatase was characterized. The optimum pH for Pi release was 6.7, and the activity depended on the concentration of Mg2+. Phosphatidylcholine and bovine serum albumin stimulated the phosphatase reaction. This phosphatase was highly specific for phosphatidate; lysophosphatidate, and water-soluble phosphate esters did not serve as substrate. The specific activity was approximately 20 nanomoles per minute per milligram of protein, which was close to that of glycerol-phosphate acyltransferase and higher than that of diacylglycerol acyltransferase. Furthermore, the activity per seed was enough to account for the rate of triacylglycerol accumulation in vivo. The step of diacylglycerol formation by phosphatidate phosphatase does not appear to be rate-limiting for triacylglycerol synthesis during seed maturation.  相似文献   

14.
Triacylglycerol formation from sn-glycerol 3-phosphate and 1,2-diacyl-sn-glycerol was markedly elevated in the presence of spermine and spermidine. This was attributed to the activation of microsomal sn-glycerol 3-phosphate acyltransferase and 1,2-diacyl-sn-glycerol acyltransferase and to the inhibition of palmitoyl-CoA hydrolase. Spermine was more effective than spermidine, and putrescine did not stimulate triacylglycerol formation. The stimulatory effect of spermine on triacylglycerol-forming enzymes was observed in the presence of Mg2+ and was apparent in the presence or absence of bovine serum albumin. The activation of 1,2-diacyl-sn-glycerol acyltransferase by spermine was specific, and other diacylglycerol-utilizing enzymes were not affected under these conditions. These studies demonstrate that polyamines may be important regulators of triacylglycerol formation in adipose tissue.  相似文献   

15.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

16.
Glycerolipid synthesis was studied in isolated hepatocytes by using 177 microM [14C]oleate and 1 mM [3H]glycerol. Chlorpromazine (25-400 microM) inhibited the synthesis of phosphatidylcholine and triacylglycerol. This was accompanied by an average increase of 12-fold in the accumulation of the labelled precursors in phosphatidate at 200 microM chlorpromazine and a decrease in the conversion of phosphatidate to diacylglycerol of 76%. These results indicate that part of the inhibition of the synthesis of phosphatidylcholine and triacylglycerol occurs at the level of phosphatidate phosphohydrolase. The relative rate of triacylglycerol synthesis at different concentrations of chlorpromazine was approximately proportional to the rate of conversion of phosphatidate to diacylglycerol. Phosphatidylcholine synthesis increased at higher rates of conversion of phosphatidate to diacylglycerol, but it was relatively independent of the latter rate when this was inhibited by more than about 30% with chlorpromazine. The addition of oleate to the hepatocytes caused a translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Chlorpromazine had the opposite effect and displaced the phosphohydrolase from the membranes in the presence or absence of oleate. There was a highly significant correlation between the activity of phosphatidate phosphohydrolase that was associated with the membranes of the hepatocytes and the calculated conversion of [3H]phosphatidate to diacylglycerol. Chlorpromazine also antagonized the association of the phosphohydrolase with microsomal membranes when cell-free preparations were incubated with combinations of oleate and spermine. Furthermore, it inhibited the transfer of the soluble phosphohydrolase to microsomal membranes that were labelled with [14C]phosphatidate and thereby decreased diacylglycerol production. It is concluded that part of the action of chlorpromazine in inhibiting the synthesis of triacylglycerol and phosphatidylcholine occurs because it prevents the interaction of the soluble phosphatidate phosphohydrolase with the membranes on which glycerolipid synthesis occurs. This in turn prevents the conversion of phosphatidate to diacylglycerol.  相似文献   

17.
The mitochondrial enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferase (mtGPAT1) catalyzes a rate-limiting step in triacylglycerol and glycerophospholipid biosynthesis, which can be modulated by protein kinases in cell free analyses. We report that treatment of primary rat adipocytes with insulin acutely affects the activity of mtGPAT1 by increasing VMAX and KM for the substrates glycerol-3-phosphate and palmitoyl-CoA. Proteolytic cleavage of isolated mitochondrial membranes and mass spectrometric peptide sequencing identify in vivo phosphorylation of serine 632 and serine 639 in mtGPAT1. These phosphorylation sites correspond to casein kinase-2 consensus sequences and are highly conserved in chordate animal, but not fly, fungal or plant, mtGPAT1.  相似文献   

18.
A sensitive radioactive assay of acyl CoA:sn-glycerol-3-phosphate-O-acyltransferase (EC 2.3.1.15) was developed to study the properties and subcellular distribution of this enzyme in rat epididymal adipose tissue. The esterification of sn-glycerol-3-phosphate was measured in the presence of palmitoyl CoA or palmitate, ATP, CoA, and Mg(2+) at pH 7.5. The presence of glycerophosphate acyltransferase was detected in both mitochondria and microsomes. The product of this reaction was identified as phosphatidate by thin-layer chromatography and dual isotope incorporation studies. Several divalent cations reduced the activity of this enzyme. Although Mg(2+) was not required for the activity of glycerophosphate acyltransferase, its addition to the incubation mixture resulted in an increased formation of neutral lipids at the expense of phosphatidate. This result is explained by an activation of microsomal phosphatidate phosphatase (EC 3.1.3.4). The effect of Mg(2+) was completely abolished by Ni(2+), Co(2+), Mn(2+), and Zn(2+). These studies suggest that the balance between Mg(2+) and several other divalent ions may be important in the regulation of neutral lipid synthesis in adipose tissue.  相似文献   

19.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

20.
1. Age-related changes in the specific activity of palmitoyl-CoA synthetase, sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15) and the esterification of [3H]palmitate into endogenous lipid in the microsomal fraction from rabbit brain have been determined throughout development. 2. The increased specific activity of sn-glycerol 3-phosphate acyltransferase at the onset of myelination (rising in parallel with other lipogenic enzymes) is consistent with a direct role of the acyltransferase in promoting the accumulation of cerebral lipid. In adult brain microsomes, although the specific activity was low, the total activity was only 20% lower than during active myelination. 3. Palmitoyl-CoA, synthesized by the palmitoyl-CoA synthetase in the microsomal membrane, was the preferred substrate for the esterification of sn-glycerol 3-phosphate. There was no evidence for a pool of palmitoyl-CoA formed from palmitate. 4. The esterification of [3H]palmitate into membrane-bound lipid remained high throughout development and may be part of an acyl-exchange cycle via lysophospholipids. [3H]palmitate was incorporated into both neutral lipids and phospholipids, while phosphatidic acid was the major product of sn-[1(3)-3H]-glycerol-3-phosphate esterification. 5. The microsomal fraction contained a pool of unesterified fatty acid, which was activated and esterified into sn-glycerol 3-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号