首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acidic glycosphingolipid components were extracted from the mycelium form of the thermally dimorphic mycopathogen Sporothrix schenckii. Two fractions from the mycelium form (Ss-M1 and Ss-M2), having the highest Rf values on HPTLC analysis, were isolated and their structures elucidated by 1- and 2-D 13C- and 1H-nuclear magnetic resonance spectroscopy, and electrospray ionization mass spectrometry with lithium adduction of molecular ions. The structures of Ss-M1 and Ss-M2 were determined to be Manalpha1-->Ins1-P-1Cer and Manalpha1--> 3Manalpha1-->Ins1-P-1Cer, respectively (where Ins = myo-inositol, P = phosphodiester). The Manalpha1-->6Ins motif is found normally in diacylglycerol-based glycophosphatidylinositols of Mycobacteria, but this is the first unambiguous identification of the same linkage making up the core structure of fungal glycosylinositol phosphorylceramides (GIPCs). These results are discussed in relation to the structures of GIPCs of other mycopathogens, including Histoplasma capsulatum and Paracoccidioides brasiliensis.  相似文献   

2.
The polypore mushroom Polyporus squamosus is the source of a lectin that exhibits a general affinity for terminal beta-galactosides, but appears to have an extended carbohydrate-binding site with high affinity and strict specificity for the nonreducing terminal trisaccharide sequence NeuAcalpha2 --> 6Galbeta1 --> 4Glc/GlcNAc. In considering the possibility that the lectin's in vivo function could involve interaction with an endogenous glycoconjugate, it would clearly be helpful to identify candidate ligands among various classes of carbohydrate-containing materials expressed by P. squamosus. Since evidence has been accumulating that glycosphingolipids (GSLs) may serve as key ligands for some endogenous lectins in animal species, possible similar roles for fungal GSLs could be considered. For this study, total lipids were extracted from mature fruiting body of P. squamosus. Multistep fractionation yielded a major monohexosylceramide (CMH) component and three major glycosylinositol phosphorylceramides (GIPCs) from the neutral and acidic lipids, respectively. These were characterized by a variety of techniques as required, including one- and two-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy; electrospray ionization-mass spectrometry (ESI-MS, tandem-MS/collision-induced decay-MS, and ion trap-MS(n)); and component and methylation linkage analysis by gas chromatography-mass spectrometry. The CMH was determined to be glucosylceramide having a typical ceramide consisting of 2-hydroxy fatty-N-acylated (4E,8E)-9-methyl-sphinga-4,8-dienine. The GIPCs were identified as Manalpha1 --> 2Ins1-P-1Cer (Ps-1), Galbeta1 --> 6Manalpha1 --> 2Ins1-P-1Cer (Ps-2), and Manalpha1 --> 3Fucalpha1 --> 2Galalpha1 --> 6Galbeta1 --> 6Manalpha1 -->2Ins1-P-1Cer (Ps-5), respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide consisting mainly of long-chain 2-hydroxy and 2,3-dihydroxy fatty-N-acylated 4-hydroxy-sphinganines). Of these GSLs, Ps-2 could potentially interact with P. squamosus lectin, and further investigations will focus on determining the binding affinity, if any, of the lectin for the GIPCs isolated from this fungus.  相似文献   

3.
Aspergillus nidulans is a well-established nonpathogenic laboratory model for the opportunistic mycopathogen, A. fumigatus. Some recent studies have focused on possible functional roles of glycosphingolipids (GSLs) in these fungi. It has been demonstrated that biosynthesis of glycosylinositol phosphorylceramides (GIPCs) is required for normal cell cycle progression and polarized growth in A. nidulans (Cheng, J., T.-S. Park, A. S. Fischl, and X. S. Ye. 2001. Mol. Cell Biol. 21: 6198-6209); however, the structures of A. nidulans GIPCs were not addressed in that study, nor were the functional significance of individual structural variants and the downstream steps in their biosynthesis. To initiate such studies, acidic GSL components (designated An-2, -3, and -5) were isolated from A. nidulans and subjected to structural characterization by a combination of one-dimensional (1-D) and 2-D NMR spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), ESI-MS/collision-induced decomposition-MS (MS/CID-MS), ESI-pseudo-[CID-MS]2, and gas chromatography-MS methods. All three were determined to be GIPCs, with mannose as the only monosaccharide present in the headgroup glycans; An-2 and An-3 were identified as di- and trimannosyl inositol phosphorylceramides (IPCs) with the structures Man alpha 1-->3Man alpha 1-->2Ins1-P-1Cer and Man alpha 1-->3(Man alpha 1-->6)Man alpha 1-->2Ins1-P-1Cer, respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide). An-5 was partially characterized, and is proposed to be a pentamannosyl IPC, based on the trimannosyl core structure of An-3.  相似文献   

4.
Novel structures of glycoinositolphosphorylceramide (GIPC) from the infective yeast form of Sporothrix schenckii were determined by methylation analysis, mass spectrometry and NMR spectroscopy. The lipid portion was characterized as a ceramide composed of C-18 phytosphingosine N-acylated by either 2-hydroxylignoceric acid (80%), lignoceric (15%) or 2,3-dihydroxylignoceric acids (5%). The ceramide was linked through a phosphodiester to myo-inositol (Ins) which is substituted on position O-6 by an oligomannose chain. GIPC-derived Ins oligomannosides were liberated by ammonolysis and characterized as: Manpalpha1-->6Ins; Manpalpha1-->3Manpalpha1-->6Ins; Manpalpha1-->6Manpalpha1-->3Manpalpha1-->3Manpalpha1-->6Ins; Manpalpha1-->2Manpalpha1-->6Manpalpha1-->3Manpalpha1-->3Manpalpha1-->6Ins. These structures comprise a novel family of fungal GIPC, as they contain the Manpalpha1-->6Ins substructure, which has not previously been characterized unambigously, and may be acylated with a 2,3 dihydroxylignoceric fatty acid, a feature hitherto undescribed in fungal lipids.  相似文献   

5.
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.  相似文献   

6.
7.
Edible fungi, mushrooms, are a popular food in Japan and over 15 cultured mushroom species are available at the food markets. Recently, constituents or ingredients of edible mushrooms have drawn attention because possibilities have been seen for their medical usage. Mycoglycolipids (basidiolipids) of higher mushrooms have been characterized as glycosylinositolphosphoceramides, having a common core structure of Manalpha1-2Ins1-[PO(4)]-Cer and extensions of Man, Gal, and/or Fuc sugar moieties. Seven mycoglycolipids were purified from the edible mushroom Hypsizygus marmoreus by successive column chromatography on ion exchange Sephadex (DEAE-Sephadex) and silicic acid (Iatrobeads). Their structures were characterized to be Ins1-[PO(4)]-Cer (AGL0), Manalpha1-2Ins1-[PO(4)]-Cer (AGL1), Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL2), Fucalpha1- 2Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL3), Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL4), Galalpha1-2Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL5), and Galalpha1-2Galalpha1-2Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL6) by sugar compositional analysis, methylation analysis, periodate oxidation, partial acid hydrolysis, enzymatic hydrolysis, immunochemical analysis, gas-liquid chromatography (GC), gas chromatography-mass spectrometry (GC-MS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and (1)H-nuclear magnetic resonance spectroscopy (NMR). Ceramide constituents of their mycoglycolipids were composed of phytosphingosine as the sole sphingoid, and mainly 2-hydroxy C22:0 and C24:0 acids as the fatty acids. By immunochemical detection, the terminal structure of AGL4, Galalpha1-3(Fucalpha1-2)Galbeta-, was shown to have blood group type B activity. Galalpha1-2 and its repeating sequence in AGL5 and AGL6 are novel structures on the nonreducing sugar end in mycoglycolipids. These two mycoglycolipids in H. marmoreus distinguish it from other basidiomycetes.  相似文献   

8.
N-Glycans in nearly all eukaryotes are derived by transfer of a precursor Glc(3)Man(9)GlcNAc(2) from dolichol (Dol) to consensus Asn residues in nascent proteins in the endoplasmic reticulum. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide-lipid properly, and the alg9 mutant, accumulates Man(6)GlcNAc(2)-PP-Dol. High-field (1)H NMR and methylation analyses of Man(6)GlcNAc(2) released with peptide-N-glycosidase F from invertase secreted by Deltaalg9 yeast showed its structure to be Manalpha1,2Manalpha1,2Manalpha1, 3(Manalpha1,3Manalpha1,6)-Manbeta1,4GlcNAcbeta1, 4GlcNAcalpha/beta, confirming the addition of the alpha1,3-linked Man to Man(5)GlcNAc(2)-PP-Dol prior to the addition of the final upper-arm alpha1,6-linked Man. This Man(6)GlcNAc(2) is the endoglycosidase H-sensitive product of the Alg3p step. The Deltaalg9 Hex(7-10)GlcNAc(2) elongation intermediates were released from invertase and similarly analyzed. When compared with alg3 sec18 and wild-type core mannans, Deltaalg9 N-glycans reveal a regulatory role for the Alg3p-dependent alpha1,3-linked Man in subsequent oligosaccharide-lipid and glycoprotein glycan maturation. The presence of this Man appears to provide structural information potentiating the downstream action of the endoplasmic reticulum glucosyltransferases Alg6p, Alg8p and Alg10p, glucosidases Gls1p and Gls2p, and the Golgi Och1p outerchain alpha1,6-Man branch-initiating mannosyltransferase.  相似文献   

9.
Glycosylphosphatidylinositol (GPI) anchors of mammals as well as yeast contain ethanolaminephosphate side chains on the alpha1-4- and the alpha1-6-linked mannoses of the anchor core structure (protein-CO-NH-(CH(2))(2)-PO(4)-6Manalpha1-2Manalpha1-6Manalpha1-4GlcNH(2)-inositol-PO(4)-lipid). In yeast, the ethanolaminephosphate on the alpha1-4-linked mannose is added during the biosynthesis of the GPI lipid by Mcd4p. MCD4 is essential because Gpi10p, the mannosyltransferase adding the subsequent alpha1-2-linked mannose, requires substrates with an ethanolaminephosphate on the alpha1-4-linked mannose. The Gpi10p ortholog of Trypanosoma brucei has no such requirement. Here we show that the overexpression of this ortholog rescues mcd4Delta cells. Phenotypic analysis of the rescued mcd4Delta cells leads to the conclusion that the ethanolaminephosphate on the alpha1-4-linked mannose, beyond being an essential determinant for Gpi10p, is necessary for an efficient recognition of GPI lipids and GPI proteins by the GPI transamidase for the efficient transport of GPI-anchored proteins from the endoplasmic reticulum to Golgi and for the physiological incorporation of ceramides into GPI anchors by lipid remodeling. Furthermore, mcd4Delta cells have a marked defect in axial bud site selection, whereas this process is normal in gpi7Delta and gpi1. This also suggests that axial bud site selection specifically depends on the presence of the ethanolaminephosphate on the alpha1-4-linked mannose.  相似文献   

10.
Acidic glycosphingolipid components were extracted from the opportunistic mycopathogen Aspergillus fumigatus and identified as inositol phosphorylceramide and glycosylinositol phosphorylceramides (GIPCs). Using nuclear magnetic resonance sppectroscopy, mass spectrometry, and other techniques, the structures of six major components were elucidated as Ins-P-Cer (Af-0), Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-2), Manp(alpha1-->2)Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-3a), Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)-Ins-P-Cer (Af-3b), Manp(alpha1-->2)-Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)Ins-P-Cer (Af-4), and Manp(alpha1-->3)Manp(alpha1-->6)GlcpN(alpha1-->2)Ins-P-Cer (Af-3c) (where Ins = myo-inositol and P = phosphodiester). A minor A. fumigatus GIPC was also identified as the N-acetylated version of Af-3c (Af-3c*), which suggests that formation of the GlcNalpha1-->2Ins linkage may proceed by a two-step process, similar to the GlcNalpha1-->6Ins linkage in glycosylphosphatidylinositol (GPI) anchors (transfer of GlcNAc, followed by enzymatic de-N-acetylation). The glycosylinositol of Af-3b, which bears a distinctive branching Galf(beta1-->6) residue, is identical to that of a GIPC isolated previously from the dimorphic mycopathogen Paracoccidioides brasiliensis (designated Pb-3), but components Af-3a and Af-4 have novel structures. Overlay immunostaining of A. fumigatus GIPCs separated on thin-layer chromatograms was used to assess their reactivity against sera from a patient with aspergillosis and against a murine monoclonal antibody (MEST-1) shown previously to react with the Galf(beta1-->6) residue in Pb-3. These results are discussed in relation to pathogenicity and potential approaches to the immunodiagnosis of A. fumigatus.  相似文献   

11.
The LPS from Shewanella oneidensis strain MR-1 was analysed by chemical methods and by NMR spectroscopy and mass spectrometry. The LPS contained no polysaccharide O-chain, and its carbohydrate backbone had the following structure: (1S)-GalNAco-(1-->4,6)-alpha-Gal-(1-->6)-alpha-Gal-(1-->3)-alpha-Gal-(1-P-3)-alpha-DDHep-(1-->5)-alpha-8-aminoKdo4R-(2-->6)-beta-GlcN4P-(1-->6)-alpha-GlcN1P, where R is P or EtNPP. There are several novel aspects to this LPS. It contains a novel linking unit between the core polysaccharide and lipid A moieties, namely 8-amino-3,8-dideoxy-D-manno-octulosonic acid (8-aminoKdo) and a residue of 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine, GalNAco) in an open-chain form, linked as cyclic acetal to O-4 and O-6 of D-galactopyranose. The structure contains a phosphodiester linkage between the alpha-D-galactopyranose and D-glycero-D-manno-heptose (DDHep) residues.  相似文献   

12.
MCD4 and GPI7 are important for the addition of glycosylphosphatidylinositol (GPI) anchors to proteins in the yeast Saccharomyces cerevisiae. Mutations in these genes lead to a reduction of GPI anchoring and cell wall fragility. Gpi7 mutants accumulate a GPI lipid intermediate of the structure Manalpha1-2[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-2Manalpha 1-6[NH(2)-(C H(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6[acyl-->]inositol-P O(4)-lipi d, which, in comparison with the complete GPI precursor lipid CP2, lacks an HF-sensitive side chain on the alpha1-6-linked mannose. In contrast, mcd4-174 accumulates only minor amounts of abnormal GPI intermediates. Here we investigate whether YLL031c, an open reading frame predicting a further homologue of GPI7 and MCD4, plays any role in GPI anchoring. YLL031c is an essential gene. Its depletion results in a reduction of GPI anchor addition to GPI proteins as well as to cell wall fragility. YLL031c-depleted cells accumulate GPI intermediates with the structures Manalpha1-2Manalpha1-2Manalpha1-6[NH(2)-(CH(2))(2)-PO( 4)-->]Manalpha1 -4GlcNalpha1-6[acyl-->]inositol-PO(4)-lipid and Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4G lcNalpha1-6[acyl-->]inos itol-PO(4)-lipid. Subcellular localization studies of a tagged version of YLL031c suggest that this protein is mainly in the ER, in contrast to Gpi7p, which is found at the cell surface. The data are compatible with the idea that YLL031c transfers the ethanolaminephosphate to the inner alpha1-2-linked mannose, i.e. the group that links the GPI lipid anchor to proteins, whereas Mcd4p and Gpi7p transfer ethanolaminephosphate onto the alpha1-4- and alpha1-6-linked mannoses of the GPI anchor, respectively.  相似文献   

13.
A novel cationic lipid was separated from bovine brain white matter by a series of chromatographies on carboxymethyl-Sephadex and silica gel in chloroform and methanol. Its structure was identified unambiguously as de-N-acetyllactotriaosylceramide (deNAcLc(3)Cer) by mass spectrometry and (1)H NMR. The natural occurrence of this glycolipid in white matter extract was detected by immunostaining of thin-layer chromatography with monoclonal antibody 5F5, which is directed to deNAcLc(3)Cer and recognizes the terminal beta-glucosaminyl (GlcNH(2)) residue, having a free NH(2) group. A de-N-acetylase capable of hydrolyzing the N-acetyl group of Lc(3)Cer was detected in bovine brain extract using N-[(14)C]acetyl-labeled Lc(3)Cer as a substrate. The biogenesis and possible functional significance of deNAcLc(3)Cer are discussed.  相似文献   

14.
The minimum oligosaccharide structure required for binding to the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by saturation-transfer difference (STD) NMR spectroscopy. Despite the low molecular mass of the protein (11 kDa), STD-NMR spectroscopy allowed the precise atomic mapping of the interactions between CV-N and various di- and trimannosides, substructures of Man-9, the predominant oligosaccharide on the HIV viral surface glycoprotein gp120. Contacts with mannosides containing the terminal Manalpha(1-->2)Manalpha unit of Man-9 were observed, while (1-->3)- and (1-6)-linked di- and trimannosides showed no interactions, demonstrating that the terminal Manalpha(1-->2)Manalpha structure plays a key role in the interaction. Precise epitope mapping revealed that, for Manalpha(1-->2)ManalphaOMe, Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe, and Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe, the protein is in close contact with H2, H3, and H4 of the nonreducing terminal mannose unit. In contrast, the STD-NMR spectrum of the CV-N/trisaccharide Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe complex was markedly different, with resonances on all sugar units displaying equal enhancements, suggesting that CV-N is able to discriminate between the three structurally related trisaccharides.  相似文献   

15.
Glycosylphosphatidylinositol (GPI) anchors of all species contain the core structure protein-CO-NH-(CH(2))(2)-PO(4)-Manalpha1-2Manalpha1-6Manalpha1-4GlcNalpha1-6inositol-PO(4)-lipid. In recent studies in yeast it was found that gpi10-1 mutants accumulate M2, an abnormal intermediate having the structure Manalpha1-6[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6(acyl-->)inositol-PO(4)-lipid. It thus was realized that yeast GPI lipids, as their mammalian counterparts, contain an additional phosphorylethanolamine side chain on the alpha1,4-linked mannose. The biosynthetic origin of this phosphorylethanolamine group was investigated using gpi10-1 Deltaept1 Deltacpt1, a strain which is unable to synthesize phosphatidylethanolamine by transferring phosphorylethanolamine from CDP-ethanolamine onto diacylglycerol, but which still can make phosphatidylethanolamine by decarboxylation of phosphatidylserine. Gpi10-1 Deltaept1 Deltacpt1 triple mutants are unable to incorporate [(3)H]ethanolamine into M2 although metabolic labeling with [(3)H]inositol demonstrates that they make as much M2 as gpi10-1. In contrast, when labeled with [(3)H]serine, the triple mutant incorporates more label into M2 than gpi10-1. This result establishes that the phosphorylethanolamine group on the alpha1,4-linked mannose is derived from phosphatidylethanolamine and not from CDP-ethanolamine.  相似文献   

16.
To determine the glycoforms of squid rhodopsin, N-glycans were released by glycoamidase A digestion, reductively aminated with 2-aminopyridine, and then subjected to 2D HPLC analysis [Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y. & Tomiya, N. (1995) Anal. Biochem.226, 139-146]. The major glycans of squid rhodopsin were shown to possess the alpha1-3 and alpha1-6 difucosylated innermost GlcNAc residue found in glycoproteins produced by insects and helminths. By combined use of 2D HPLC, electrospray ionization-mass spectrometry and permethylation and gas chromatography-electron ionization mass spectrometry analyses, it was revealed that most (85%) of the N-glycans exhibit the novel structure Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4(Galbeta1-4Fucalpha1-6)(Fucalpha1-3)GlcNAc.  相似文献   

17.
The unicellular stercorarian protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas' disease. The epimastigote form of the parasite is covered in a dense coat of glycoinositol phospholipids and short glycosylphosphatidylinositol (GPI)-anchored mucinlike molecules. Here, we describe the purification and structural characterization of NETNES, a relatively minor but unusually complex glycoprotein that coexists with these major surface components. The mature glycoprotein is only 13 amino acids in length, with the sequence AQENETNESGSID, and exists in two forms with either four or five post-translational modifications. These are either one or two asparagine-linked oligomannose glycans, two linear alpha-mannose glycans linked to serine residues via phosphodiester linkages, and a GPI membrane anchor attached to the C-terminal aspartic acid residue. The variety and density of post-translational modifications on an unusually small peptide core make NETNES a unique type of glycoprotein. The N-glycans are predominantly Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-Asn; the phosphate-linked glycans are a mixture of (Manalpha1-2)0-3Man1-P-Ser; and the GPI anchor has the structure Manalpha1-2(ethanolamine phosphate)Manalpha1-2Manalpha1-6Manalpha1-4(2-aminoethylphosphonate-6)GlcNalpha1-6-myo-inositol-1-P-3(sn-1-O-(C16:0)alkyl-2-O-(C16:0)acylglycerol). Four putative NETNES genes were found in the T. cruzi genome data base. These genes are predicted to encode 65-amino acid proteins with cleavable 26-amino acid N-terminal signal peptides and 26-amino acid C-terminal GPI addition signal peptides.  相似文献   

18.
Galactomannan is a characteristic polysaccharide of the human filamentous fungal pathogen Aspergillus fumigatus that can be used to diagnose invasive aspergillosis. In this study, we report the isolation of a galactomannan fraction associated to membrane preparations from A. fumigatus mycelium by a lipid anchor. Specific chemical and enzymatic degradations and mass spectrometry analysis showed that the lipid anchor is a glycosylphosphatidylinositol (GPI). The lipid part is an inositol phosphoceramide containing mainly C18-phytosphingosine and monohydroxylated lignoceric acid (2OH-C(24:0) fatty acid). GPI glycan is a tetramannose structure linked to a glucosamine residue: Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN. The galactomannan polymer is linked to the GPI structure through the mannan chain. The GPI structure is a type 1, closely related to the one previously described for the GPI-anchored proteins of A. fumigatus. This is the first time that a fungal polysaccharide is shown to be GPI-anchored.  相似文献   

19.
The disialogangliosides of WHT/Ht mouse thymomas, which were obtained by subcutaneous transplantation of a thymoma that developed spontaneously in a WHT/Ht mouse, were purified and characterized. From the results of sugar-composition analysis, a permethylation study, enzymatic hydrolysis followed by TLC-immunostaining, negative-ion fast atom bombardment mass spectrometry (FAB/MS), and 1H-NMR spectroscopy, the structure of one of the five purified disialogangliosides was determined to be IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer. The other 4 disialogangliosides were tentatively characterized on the basis of sialidase treatment followed by TLC-immunostaining with cholera toxin B subunit and anti-Gg4Cer antibody to be IV alpha(NeuAc alpha-NeuGc)-Gg4Cer, IV alpha(NeuGc alpha-NeuAc)-Gg4Cer, IV alpha NeuAc,II3 alpha NeuAc-Gg4Cer, and IV alpha NeuGc,II3 alpha NeuGc-Gg4Cer. In addition, another component exhibiting one spot on TLC was a mixture of IV alpha NeuGc,II3 alpha NeuAc-Gg4Cer and IV alpha NeuAc,II3 alpha NeuGc-Gg4Cer. Then the occurrence of these gangliosides in WHT/Ht mouse thymocytes was examined. As one of two major disialogangliosides, the thymocytes contained IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer, which was characterized with a mass spectrum and mass chromatograms obtained by micro high-performance liquid chromatography-FAB/MS. The other major disialoganglioside was tentatively characterized to be II3 alpha-(NeuGc alpha-NeuGc)-Gg4Cer by sialidase treatment followed by TLC-immunostaining. A sialidase-susceptible monosialoganglioside, IV3 alpha NeuGc-Gg4Cer [GM1b(NeuGc)], had been reported to be characteristic of mouse immune tissues [Nakamura, K. et al. (1988) J. Biochem, 103, 201-208]. Taken together, the results suggest that the pathway from Gg4Cer to IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer through GM1b(NeuGc) is quite active in mouse immune tissues.  相似文献   

20.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been identified in all eukaryotes. In fungi, structural and biosynthetic studies of GPIs have been restricted to the yeast Saccharomyces cerevisiae. In this article, four GPI-anchored proteins were purified from a membrane preparation of the human filamentous fungal pathogen Aspergillus fumigatus. Using new methodology applied to western blot protein bands, the GPI structures were characterized by ES-MS, fluorescence labeling, HPLC, and specific enzymatic digestions. The phosphatidylinositol moiety of the A. fumigatus GPI membrane anchors was shown to be an inositol-phosphoceramide containing mainly phytosphingosine and monohydroxylated C24:0 fatty acid. In constrast to yeast, only ceramide was found in the GPI anchor structures of A. fumigatus, even for Gel1p, a homolog of Gas1p in S. cerevisiae that contains diacylglycerol. The A. fumigatus GPI glycan moiety is mainly a linear pentomannose structure linked to a glucosamine residue: Manalpha1-3Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号