首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wheat, the deployment of marker‐assisted selection has long been hampered by the lack of markers compatible with high‐throughput cost‐effective genotyping techniques. Recently, insertion site‐based polymorphism (ISBP) markers have appeared as very powerful new tools for genomics and genetic studies in hexaploid wheat. To demonstrate their possible use in wheat breeding programmes, we assessed their potential to meet the five main requirements for utilization in MAS: flexible and high‐throughput detection methods, low quantity and quality of DNA required, low cost per assay, tight link to target loci and high level of polymorphism in breeding material. Toward this aim, we developed a programme, IsbpFinder, for the automated design of ISBP markers and adapted three detection methods (melting curve analysis, SNaPshot® Multiplex System and Illumina BeadArray technology) for high throughput and flexible detection of ISBP or ISBP‐derived SNP markers. We demonstrate that the high level of polymorphism of the ISBPs combined with cost‐effective genotyping methods can be used to efficiently saturate genetic maps, discriminate between elite cultivars, and design tightly linked diagnostic markers for virtually all target loci in the wheat genome. All together, our results suggest that ISBP markers have the potential to lead to a breakthrough in wheat marker‐assisted selection.  相似文献   

2.
An individual soybean breeder can generate over one hundred thousand new genotypes each year. The efficiency of selection in these populations could be improved if these genotypes were effectively screened with one DNA marker that identified an important gene, and if laboratory throughput was high and costs were low. Our aim was to develop a rapid genotyping procedure for resistance to the soybean cyst nematode. A high-throughput genotyping method was developed with fluorogenic probes to distinguish between two insertion polymorphisms in alleles of an AFLP marker that is located about 50 kbp from the Rhg4 gene candidate. The assay uses the 5 exonuclease activity of Taq polymerase in conjunction with fluorogenic probes for each allele. The method can be used for scoring the polymorphism in a recombinant inbred line population and for screening parent lines in a breeding program. The TaqmanTM method of determining genotype was accurate in 90% of scores in the RIL population compared to 95% accuracy with electrophoresis. Among 94 cultivars that are parents in our breeding program allele 2 that is derived from the sources of resistance to SCN was common in resistant cultivars (30 of 56) but rare in susceptible cultivars (3 of 38). Therefore, this method can be applied to automated large-scale genotyping for soybean breeding programs.  相似文献   

3.
The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high‐throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm.  相似文献   

4.
The Factor V Leiden mutation is an important human polymorphism, responsible for increased risk of venous thrombosis in heterozygotes as well as homozygotes. Therefore, screening is a useful possibility, and many detection systems have been described for PCR products. We have developed a simplified and robust assay using oligonucleotide probes for normal and mutant sequences, labeled with europium and samarium, respectively, and measured by time-resolved fluorescence. Populations consisting of 233 Welsh and 148 Irish subjects were examined by both restriction fragment length polymorphism (RFLP) analysis and our assay. The allele frequency was 14/466 in the Welsh and 5/296 in the Irish population, in line with other surveys of European populations. Results were not obtained in 2/381 samples by RFLP, compared with 1/381 with our method. We conclude that our method represents an improved system capable of considerable throughput at reasonable cost.  相似文献   

5.
Understanding the distribution of genetic diversity within and among individuals, populations, species and gene pools is crucial for the efficient management of germplasm collections. Molecular markers are playing an increasing role in germplasm characterization, yet their broad application is limited by the availability of markers, the costs and the low throughput of existing technologies. This is particularly true for crops of resource-poor farmers such as cassava, Manihot esculenta. Here we report on the development of Diversity Arrays Technology (DArT) for cassava. DArT uses microarrays to detect DNA polymorphism at several hundred genomic loci in a single assay without relying on DNA sequence information. We tested three complexity reduction methods and selected the two that generated genomic representations with the largest frequency of polymorphic clones (PstI/TaqI: 14.6%, PstI/BstNI: 17.2%) to produce large genotyping arrays. Nearly 1,000 candidate polymorphic clones were detected on the two arrays. The performance of the PstI/TaqI array was validated by typing a group of 38 accessions, 24 of them in duplicate. The average call rate was 98.1%, and the scoring reproducibility was 99.8%. DArT markers displayed fairly high polymorphism information content (PIC) values and revealed genetic relationships among the samples consistent with the information available on these samples. Our study suggests that DArT offers advantages over current technologies in terms of cost and speed of marker discovery and analysis. It can therefore be used to genotype large germplasm collections.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement for monitoring programs. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins. Assays are based on the discrimination of genetic differences in the species. A commercially available PCR ELISA Dig Detection Kit in a microtiter plate was adapted for the rapid assessment of specificity of the two probes used in a sandwich hybridization assay. The toxic dinoflagellate Alexandrium minutum was used as the target organism and a capture and signal probe were designed for a species-specific identification of this species. This assay also provided the necessary specificity tests prior to the probes being adapted to an automated biosensor using a sandwich hybridization format. All probes regardless of the detection method must be extensively tested prior to use in the field. Total rRNA was isolated from three different strains of A. minutum and the mean concentration of RNA per cell of was determined to be 0.028 ng ± 0.003. Thus, a standard calibration curve for different RNA concentrations was determined so that cell numbers could be inferred from the assay. The assay and the standard curve were evaluated by using spiked field samples. The results demonstrated that the molecular assay was able to detect A. minutum cells at different cell counts in the presence of a complex background.  相似文献   

7.
单核苷酸多态性检测方法的新进展   总被引:8,自引:4,他引:8  
赵广荣  扬帆  元英进  高秀梅  张军平 《遗传》2005,27(1):123-129
单核苷酸多态性(single nucleotide polymorphism,SNP)是第三代遗传标记,在基因定位、遗传疾病和人类起源等理论研究中具有重大意义, 在抗药性或药物过敏反应中扮演着极其重要的角色,正逐步成为分子诊断、临床检验、新药研发的重要手段。随着人类基因组测序的完成,SNP分型和发现成为遗传和生命医学领域研究的热点之一。近年来,SNP的检测方法层出不穷,发展很快。文章综述和分析了几种新建立的SNP检测方法,包括基因芯片、分子探针、荧光偏振、荧光共振、质谱和磁性颗粒分析。在生物化学、工程学和分析软件等方面取得突破的基础上,有望建立灵敏准确、简便易行、高通量、低费用的SNP技术。Abstract: Single nucleotide polymorphism (SNP) is the third generation genetic marker. SNP detection now is becoming increasingly important means in molecular diagnostics, clinical assay and novel drug development. It plays an essential role in drug resistance and anaphylactic reaction and has the importamce in theoretical studies of gene location, hereditary diseases and human origin. With the accomplishment of human genome sequencing, the genotyping and discovering of SNP are becoming hot subjects in genetics and biomedicine researches. The methods for SNP detection were renewed rapidly and developed fast in past few years. In this review, several newly established detection methods including gene chip, molecular probe, fluorescence polarization and resonance, mass spectrometry, and bacterial magnetic particle are discussed. It could be expected that an accurate and sensitive, simple and easy-to-handle SNP technology with low cost and high throughput will be available on the basis of research breakthroughs of biochemistry, engineering and analytic software.  相似文献   

8.
Aims:  To facilitate efficient identification of commonly encountered mycobacteria species ( Mycobacterium tuberculosis , Mycobacterium avium , Mycobacterium intracellulare , Mycobacterium fortuitum complex , Mycobacterium chelonae/abscessus , Mycobacterium kansasii , Mycobacterium gordonae ) in high throughput laboratories, a 16s rDNA sequence based real-time PCR assay was developed and evaluated.
Methods and Results:  Oligonucleotide primers and hybridization probes were designed based on sequence differences of the mycobacterial 16S rDNA gene. This assay was evaluated with 1649 suspected non-tuberculosis mycobacterial isolates. Apart from 3 out of 40  M. avium isolates that showed false signal with M. intracellulare specific probe, 100% specificity was obtained for all tested probes. Assay sensitivity varied from 88·9 to 100% depending on species. Average cost for obtaining a definite identification was only USD 1·1 with an average turn around time of less than 3 days.
Conclusions:  A rapid, simple and inexpensive real-time PCR assay was developed for the identification of common encountered mycobacteria in a high throughput laboratory setting.
Significance and Impact of the Study:  With this assay, more than 80% of the clinically isolated nontuberculous mycobacteria could be identified in a highly cost effective manner. This helped to save resources for other laboratory activities especially in high throughput mycobacterial laboratories.  相似文献   

9.
We report the development of a qualitative fluorescent multiplex homogeneous assay designed for the detection of the two most common hemochromatosis mutations using dual-labeled fluorescent probes. The assay is able to detect four allelic variants in a single closed tube using a single thermocycling protocol. The procedure combines the great sensitivity of the polymerase chain reaction, the specificity provided by allele-specific oligonucleotide hybridization using the 5(') nuclease assay format, and the higher throughput of a multicolor fluorescence detection procedure. Genomic DNA was prepared from whole blood specimens using standard procedures. Following DNA sample preparation, two regions of the hemochromatosis gene (HFE) including the H63D and C282Y mutations were coamplified and detected in real-time by four different fluorescently labeled allele-specific oligonucleotide probes. Assay specificity was demonstrated by a blind methods comparison study that included 37 DNA samples from individuals with a known HFE genotype. Results from the study showed that the multicolor multiplex HFE assay unambiguously classified all possible genotypes for the HFE gene C282Y and H63D mutations(1). This technique will be useful for research and molecular diagnostic laboratories and can be easily adapted for the detection of other single nucleotide polymorphisms.  相似文献   

10.

Background

Bladder cancer has the peculiarity of shedding neoplastic cells and their components in urine representing a valuable opportunity to detect diagnostic markers. Using a semi-quantitative method we previously demonstrated that the levels of Tyr-phosphorylated proteins (TPPs) are highly increased in bladder cancer tissues and that soluble TPPs can also be detected in patient's urine samples. Although the preliminary evaluation showed very promising specificity and sensitivity, insufficient accuracy and very low throughput of the method halted the diagnostic evaluation of the new marker. To overcome this problem we developed a quantitative methodology with high sensitivity and accuracy to measure TPPs in urine.

Methods

The Immobilized Metal Affinity Chromatography (IMAC) was miniaturized in a 96 well format. Luminescence, visible and infrared fluorescence antibody-based detection methods were comparatively evaluated.

Results

Due to their low abundance we evidenced that both phosphoprotein enrichment step and very sensitive detection methods are required to detect TPPs in urine samples. To pursue high throughput, reproducibility and cost containment, which are required for bladder cancer screening programs, we coupled the pre-analytical IMAC procedure with high sensitive detection phases (infrared fluorescence or chemiluminescence) in an automated platform.

Conclusions

A high throughput method for measuring with high sensitivity TPP levels in urine samples is now available for large clinical trial for the establishment of the diagnostic and predictive power of TPPs as bladder cancer marker.

General significance

The new assay represents the first quantitative and high throughput method for the measurement of TPPs in urine.  相似文献   

11.
Considerable interest has recently focused on defining the mechanisms involved in the regulation of gene expression at the level of mRNA stability and translational efficiency. However, the assays used to directly investigate interactions between RNA and cytoplasmic proteins have been difficult to establish, and methods are not widely available. Here, we describe a robust method for RNA electrophoretic mobility shift and UV cross-linking assays that allows rapid detection of cytoplasmic RNA-protein interactions. For added convenience to new investigators, these assays use mini-gels with an electrophoresis time of 15-20 min, enabling a high throughput of samples. The method works successfully with many different probes and cytoplasmic extracts from a variety of cell lines. Furthermore, we provide a system to optimize characterization of the RNA-protein complex and troubleshoot most assay difficulties.  相似文献   

12.

Background

Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods.

Results

A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point.

Conclusions

Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.  相似文献   

13.
Use of SNPs has been favoured due to their abundance in plant and animal genomes, accompanied by the falling cost and rising throughput capacity for detection and genotyping. Here, we present in vitro (obtained from targeted sequencing) and in silico discovery of SNPs, and the design of medium‐throughput genotyping arrays for two oyster species, the Pacific oyster, Crassostrea gigas, and European flat oyster, Ostrea edulis. Two sets of 384 SNP markers were designed for two Illumina GoldenGate arrays and genotyped on more than 1000 samples for each species. In each case, oyster samples were obtained from wild and selected populations and from three‐generation families segregating for traits of interest in aquaculture. The rate of successfully genotyped polymorphic SNPs was about 60% for each species. Effects of SNP origin and quality on genotyping success (Illumina functionality Score) were analysed and compared with other model and nonmodel species. Furthermore, a simulation was made based on a subset of the C. gigas SNP array with a minor allele frequency of 0.3 and typical crosses used in shellfish hatcheries. This simulation indicated that at least 150 markers were needed to perform an accurate parental assignment. Such panels might provide valuable tools to improve our understanding of the connectivity between wild (and selected) populations and could contribute to future selective breeding programmes.  相似文献   

14.
RNA editing in plants, animals, and humans modifies genomically encoded cytidine or adenosine nucleotides to uridine or inosine, respectively, in mRNAs. We customized the MassARRAY System (Sequenom Inc., San Diego, CA, USA, www.sequenom.com ) to assay multiplex PCR‐amplified single‐stranded cDNAs and easily analyse and display the captured data. By using appropriate oligonucleotide probes, the method can be tailored to any organism and gene where RNA editing occurs. Editing extent of up to 40 different nucleotides in each of either 94 or 382 different samples (3760 or 15 280 editing targets, respectively) can be examined by assaying a single plate and by performing one repetition. We have established this mass spectrometric method as a dependable, cost‐effective and time‐saving technique to examine the RNA editing efficiency at 37 Arabidopsis thaliana chloroplast editing sites at a high level of multiplexing. The high‐throughput editing assay, named Multiplex RT‐PCR Mass Spectrometry (MRMS), is ideal for large‐scale experiments such as identifying population variation, examining tissue‐specific changes in editing extent, or screening a mutant or transgenic collection. Moreover, the required amount of starting material is so low that RNA from fewer than 50 cells can be examined without amplification. We demonstrate the use of the method to identify natural variation in editing extent of chloroplast C targets in a collection of Arabidopsis accessions.  相似文献   

15.
Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes. Briefly, aldehyde-attached sequence-specific single-stranded oligonucleotide probes are arrayed and covalently attached to a hydrazine-derivatized biosensor chip surface. Unique DNA sequences (or genes) are detected by hybridizing biotinylated PCR amplicons of the DNA sequences to probes on the chip surface. In the SNP assay, target sequences (PCR amplicons) are hybridized in the presence of a mixture of biotinylated detector probes and a thermostable DNA ligase. Only perfect matches between the probe and target sequences, but not those with even a single nucleotide mismatch, can be covalently fixed on the chip surface. In both cases, the presence of specific target sequences is signified by a color change on the chip surface (gold to blue/purple) after brief incubation with an anti-biotin IgG horseradish peroxidase (HRP) to generate a precipitable product from an HRP substrate. Highly sensitive and accurate identification of PCR targets can be completed within 30 min. This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low to high throughput and very economical. This technology can be customized for any nucleotide sequence-based identification assay and widely applied in crop breeding, trait mapping, and other work requiring positive detection of specific nucleotide sequences.  相似文献   

16.
The cloning, sequencing, and analysis of a Pseudomonas stutzeri Zobell 23S rRNA gene is described. Three variable regions were identified, and oligonucleotides homologous to portions of these regions were synthesized. The oligonucleotides were used as probes to screen DNA from various cultured bacteria to identify a species-specific probe. All probes were found to hybridize strongly with P. stutzeri Zobell DNA under stringent conditions and did not hybridize with other Pseudomonas species. One probe showed slight cross-reactivity with DNA from four other bacteria under the hybridization conditions used. Finally, PCR conditions were optimized for detection of P. stutzeri Zobell in mixed culture with a detection limit of 400 cells. The assay detected P. stutzeri Zobell rDNA in coastal seawater samples sampled over a 20-month period. In the future, these probes could be used to quantify the 23S rRNA and rDNA from P. stutzeri Zobell in mixed culture and in environmental samples.  相似文献   

17.
SARS冠状病毒实时荧光RT-PCR定量检测   总被引:1,自引:0,他引:1  
为建立一种快速、准确、特异的SARS病毒RNA定量检测方法,根据复合探针荧光定量分析原理,对SARS病毒核酸进行实时荧光定量RT-PCR检测.借助计算机辅助,对SARS病毒基因靶序列以及检测引物和探针进行了优化筛选;利用体外转录SARS病毒RNA靶序列,对RT-PCR反应的镁离子浓度参数进行了优化;比较Trizol法、磁珠法、Qiagen法、煮沸法等4种方法提取RNA的检测效果,建立了样本处理方法;通过对构建的体外转录靶序列模型的检测,对本方法的灵敏度、特异性、定量线性关系、精确度等进行了评价,并通过对42例临床标本的检测对本方法的检测效果进行了评估. 通过克隆SARS病毒核酸靶序列并进行体外转录,获得了长度约1.2 kb的体外转录RNA靶序列;经优化,荧光RT-PCR反应液中的Mg2+浓度以4.0 mmol/L为最好;RNA提取方法采用磁珠法效果较好;本方法的检测灵敏度最低可达5个拷贝的体外转录RNA分子,特异性100%,Ct值的CV值小于5%.对临床确诊的42份SARS病人血清和漱口水标本的检测结果表明,该方法的检出率为79%,与荧光抗体检测法的符合率为70%.上述结果表明,该方法建立的荧光定量RT-PCR技术能够快速准确、特异、敏感地对SARS病毒核酸进行定量分析,为临床SARS冠状病毒RNA的检测提供了新的,更为有效的检测方法.  相似文献   

18.
Nucleic acid sequence-based amplification with electrochemiluminescent detection (NASBA/ECL) is an isothermal technique allowing rapid amplification and detection of specific regions of nucleic acid from a diverse range of sources. It is especially suitable for amplifying RNA. A NASBA/ECL technique has been developed allowing the detection of RNA from avian influenza virus subtype H7 derived from allantoic fluid harvested from inoculated chick embryos and from cell cultures. Degenerate amplification primers and amplicon capture probes were designed enabling the detection of low and highly pathogenic avian influenza of the H7 subtype from the Eurasian and North American lineages and the Australian sub-lineage. The NASBA/ECL technique is specific for subtype H7 and does not cross-react with other influenza subtypes or with viruses containing haemagglutinin-like genes. The assay is 10- to 100-fold more sensitive than a commercially available antigen capture immunoassay system. The NASBA/ECL assay could be used in high throughput poultry screening programmes.  相似文献   

19.
20.
Harmful Algal Blooms (HABs), mainly caused by dinoflagellates and diatoms, have great economic and sanitary implications. An important contribution for the comprehension of HAB phenomena and for the identification of risks related to toxic algal species is given by the monitoring programs. In the microscopy-based monitoring methods, harmful species are distinguished through their morphological characteristics. This can be time consuming and requires great taxonomic expertise due to the existence of morphologically close-related species. The high throughput, automation possibility and specificity of microarray-based detection assay, makes this technology very promising for qualitative detection of HAB species. In this study, an oligonucleotide microarray targeted to the ITS1-5.8S-ITS2 rDNA region of nine toxic dinoflagellate species/clades was designed and evaluated. Two probes (45-47 nucleotides in length) were designed for each species/clade to reduce the potential for false positives. The specificity and sensitivity of the probes were evaluated with ITS1-5.8S-ITS2 PCR amplicons obtained from 20 dinoflagellates cultured strains. Cross hybridization experiments confirmed the probe specificity; moreover, the assay showed a good sensitivity, allowing the detection of up to 2 ng of labeled PCR product. The applicability of the assay with field samples was demonstrated using net concentrated seawater samples, un-spiked or spiked with known amounts of cultured cells. Despite the general application of microarray technology for harmful algae detection is not new, a peculiar group of target species/clades has been included in this new-format assay. Moreover, novelties regarding mainly the probes and the target rDNA region have allowed sensitivity improvements in comparison to previously published studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号