首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kang M  Akbarali HI 《FEBS letters》2008,582(20):3033-3036
Tyrosine nitration results in altered function of selective proteins, including human smooth muscle L-type calcium channel, hCa(v)1.2b. We report here that Ca(v)1.2 is also subject to "denitration". Cell lysates from activated macrophage-like cell line, RAW264.7 cells, reversed peroxynitrite-induced nitration of the carboxy terminus of Ca(v)1.2 in a 1D gel assay. Tyrosine phosphorylation of the calcium channel by c-src kinase was blocked by nitration but reversed by pretreatment with RAW264.7 cell lysates. These findings indicate that denitration may be a physiological mechanism to restore cellular excitability during inflammation.  相似文献   

2.
3.
In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.  相似文献   

4.
This review describes recent findings on voltage-gated Ca channel (Cav channel) cloned from ascidians, the most primitive chordates. Ascidian L-type like Cav channel has several unusual features: (1). it is closely related to the prototype of chordate L-type Cav channels by sequence alignment; (2). it is resistant to dihydropyridine due to single amino acid change in the pore region, and (3). maternally provided RNA putatively encodes a truncated protein which has remarkable suppressive effect on Cav channel expression during development. Ascidian Cav channel will provide a useful molecular clue in the future to understand Ca(2+)-regulated cell differentiation and physiology with the background of recently defined ascidian genome and molecular biological tools.  相似文献   

5.
Kobayashi K  Sasaki T  Sato K  Kohno T 《Biochemistry》2000,39(48):14761-14767
We determined the three-dimensional structure of omega-conotoxin TxVII, a 26-residue peptide that is an L-type calcium channel blocker, by (1)H NMR in aqueous solution. Twenty converged structures of this peptide were obtained on the basis of 411 distance constraints obtained from nuclear Overhauser effect connectivities, 20 torsion angle constraints, and 21 constraints associated with hydrogen bonds and disulfide bonds. The root-mean-square deviations about the averaged coordinates of the backbone atoms (N, C(alpha), C, and O) and all heavy atoms were 0.50 +/- 0.09 A and 0.99 +/- 0.13 A, respectively. The structure of omega-conotoxin TxVII is composed of a triple-stranded antiparallel beta-sheet and four turns. The three disulfide bonds in omega-conotoxin TxVII form the classical cystine knot motif of toxic or inhibitory polypeptides. The overall folding of omega-conotoxin TxVII is similar to those of the N-type calcium channel blockers, omega-conotoxin GVIA and MVIIA, despite the low amino acid sequence homology among them. omega-Conotoxin TxVII exposes many hydrophobic residues to a certain surface area. In contrast, omega-conotoxin GVIA and MVIIA expose basic residues in the same way as omega-conotoxin TxVII. The channel binding site of omega-conotoxin TxVII is different from those of omega-conotoxin GVIA and MVIIA, although the overall folding of these three peptides is similar. The gathered hydrophobic residues of omega-conotoxin TxVII probably interact with the hydrophobic cluster of the alpha(1) subunit of the L-type calcium channel, which consists of 13 residues located in segments 5 and 6 in domain III and in segment 6 in domain IV.  相似文献   

6.
7.
8.
Nonesterified fatty acids such as oleate and palmitate acutely potentiate insulin secretion from pancreatic islets in a glucose-dependent manner. In addition, recent studies show that fatty acids elevate intracellular free Ca(2+) and increase voltage-gated Ca(2+) current in mouse beta-cells, although the mechanisms involved are poorly understood. Here we utilized a heterologous system to express subunit-defined voltage-dependent L-type Ca(2+) channels (LTCC) and demonstrate that beta-cell calcium may increase in part from an interaction between fatty acid and specific calcium channel subunits. Distinct functional LTCC were assembled in both COS-7 and HEK-293 cells by expressing either one of the EYFP-tagged L-type alpha(1)-subunits (beta-cell Cav1.3 or lung Cav1.2) and ERFP-tagged islet beta-subunits (ibeta(2a) or ibeta(3)). In COS-7 cells, elevations in intracellular Ca(2+) mediated by LTCC were enhanced by an oleate-BSA complex. To extend these findings, Ca(2+) current was measured in LTCC-expressing HEK-293 cells that revealed an increase in peak Ca(2+) current within 2 min after addition of the oleate complex, with maximal potentiation occurring at voltages <0 mV. Both Cav1.3 and Cav1.2 were modulated by oleate, and the presence of different auxiliary beta-subunits resulted in differential augmentation. The potentiating effect of oleate on Cav1.2 was abolished by the pretreatment of cells with triacsin C, suggesting that long-chain CoA synthesis is necessary for Ca(2+) channel modulation. These results show for the first time that two L-type Ca(2+) channels expressed in beta-cells (Cav1.3 and Cav1.2) appear to be targeted by nonesterified fatty acids. This effect may account in part for the acute potentiation of glucose-dependent insulin secretion by fatty acids.  相似文献   

9.
10.
Eukaryotic voltage-gated sodium channels (VGSCs) are essential for the initiation and propagation of action potentials in electrically excitable cells, and are important pharmaceutical targets for the treatment of neurological disorders such as epilepsy, cardiac arrhythmias, and chronic pain. Evidence suggests that small, hydrophobic, VGSC-blocking drugs can gain access to binding residues within the central cavity of these channels by passing through lateral, lipid-filled “fenestrations” which run between the exterior of the protein and its central pore. Here, we use molecular dynamics simulations to investigate how the size and shape of fenestrations change over time in several bacterial VGSC models and a homology model of Nav1.4. We show that over the course of the simulations, the size of the fenestrations is primarily influenced by rapid protein motions, such as amino acid side-chain rotation, and highlight that differences between fenestration bottleneck-contributing residues are the primary cause of variations in fenestration size between the 6 bacterial models. In the eukaryotic channel model, 2 fenestrations are wide, but 2 are narrow due to differences in the amino acid sequence in the 4 domains. Lipid molecules are found to influence the size of the fenestrations by protruding acyl chains into the fenestrations and displacing amino acid side-chains. Together, the results suggest that fenestrations provide viable pathways for small, flexible, hydrophobic drugs.  相似文献   

11.
12.
Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.  相似文献   

13.
Benz(othi)azepine (BTZ) derivatives constitute one of three major classes of L-type Ca(2+) channel ligands. Despite intensive experimental studies, no three-dimensional model of BTZ binding is available. Here we have built KvAP- and KcsA-based models of the Ca(v)1.2 pore domain in the open and closed states and used multiple Monte Carlo minimizations to dock representative ligands. In our open channel model, key functional groups of BTZs interact with BTZ-sensing residues, which were identified in previous mutational experiments. The bulky tricyclic moiety occupies interface between domains III and IV, while the ammonium group protrudes into the inner pore, where it is stabilized by nucleophilic C-ends of the pore helices. In the closed channel model, contacts with several ligand-sensing residues in the inner helices are lost, which weakens ligand-channel interactions. An important feature of the ligand-binding mode in both open and closed channels is an interaction between the BTZ carbonyl group and a Ca(2+) ion chelated by the selectivity filter glutamates in domains III and IV. In the absence of Ca(2+), the tricyclic BTZ moiety remains in the domain interface, while the ammonium group directly interacts with a glutamate residue in the selectivity filter. Our model suggests that the Ca(2+) potentiation involves a direct electrostatic interaction between aCa(2+) ion and the ligand rather than an allosteric mechanism. Energy profiles indicate that BTZs can reach the binding site from the domain interface, whereas access through the open activation gate is unlikely, because reorientation of the bulky molecule in the pore is hindered.  相似文献   

14.
Little is known about the native properties of unitary cardiac L-type calcium currents (i(Ca)) measured with physiological calcium (Ca) ion concentration, and their role in excitation-contraction (E-C) coupling. Our goal was to chart the concentration-dependence of unitary conductance (gamma) to physiological Ca concentration and compare it to barium ion (Ba) conductance in the absence of agonists. In isolated, K-depolarized rat myocytes, i(Ca) amplitudes were measured using cell-attached patches with 2 to 70 mM Ca or 2 to 105 mM Ba in the pipette. At 0 mV, 2 mM of Ca produced 0.12 pA, and 2 mM of Ba produced 0.19 pA unitary currents. Unitary conductance was described by a Langmuir isotherm relationship with a maximum gammaCa of 5.3 +/- 0.2 pS (n = 15), and gammaBa of 15 +/- 1 pS (n = 27). The concentration producing half-maximal gamma, Kd(gamma), was not different between Ca (1.7 +/- 0.3 mM) and Ba (1.9 +/- 0.4 mM). We found that quasi-physiological concentrations of Ca produced currents that were as easily resolvable as those obtained with the traditionally used higher concentrations. This study leads to future work on the molecular basis of E-C coupling with a physiological concentration of Ca ions permeating the Ca channel.  相似文献   

15.
Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.  相似文献   

16.
Increased function of neuronal L-type voltage-sensitive Ca2 + channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal “zipper” slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca2 + dysregulation can differ substantially between animal models of normal aging and models of pathological aging.  相似文献   

17.
Calcium channels play crucial physiological roles. In the absence of high-resolution structures of the channels, the mechanism of ion permeation is unknown. Here we used a method proposed in an accompanying paper (Cheng and Zhorov in Eur Biophys J, 2009) to predict possible chelation patterns of calcium ions in a structural model of the L-type calcium channel. We compared three models in which two or three calcium ions interact with the four selectivity filter glutamates and a conserved aspartate adjacent to the glutamate in repeat II. Monte Carlo energy minimizations yielded many complexes with calcium ions bound to at least two selectivity filter carboxylates. In these complexes calcium-carboxylate attractions are counterbalanced by calcium-calcium and carboxylate-carboxylate repulsions. Superposition of the complexes suggests a high degree of mobility of calcium ions and carboxylate groups of the glutamates. We used the predicted complexes to propose a permeation mechanism that involves single-file movement of calcium ions. The key feature of this mechanism is the presence of bridging glutamates that coordinate two calcium ions and enable their transitions between different chelating patterns involving four to six oxygen atoms from the channel protein. The conserved aspartate is proposed to coordinate a calcium ion incoming to the selectivity filter from the extracellular side. Glutamates in repeats III and IV, which are most distant from the repeat II aspartate, are proposed to coordinate the calcium ion that leaves the selectivity filter to the inner pore. Published experimental data and earlier proposed permeation models are discussed in view of our model.  相似文献   

18.
A number of mutations have been linked to diseases for which the underlying mechanisms are poorly understood. An example is Timothy Syndrome (TS), a multisystem disorder that includes severe cardiac arrhythmias. Here we employ theoretical simulations to examine the effects of a TS mutation in the L-type Ca(2+) channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca(2+) channel to arrhythmia susceptibility. Our results indicate that 1) the TS mutation disrupts the rate-dependent dynamics in a single cardiac cell and promotes the development of alternans; 2) in coupled tissue, concordant alternans is observed at slower heart rates in mutant tissue than in normal tissue and, once initiated, rapidly degenerates into discordant alternans and conduction block; and 3) the ECG computed from mutant-simulated tissue exhibits prolonged QT intervals at physiological rates and with small increases in pacing rate, T-wave alternans, and alternating T-wave inversion. At the cellular level, enhanced Ca(2+) influx due to the TS mutation causes electrical instabilities. In tissue, the interplay between faulty Ca(2+) influx and steep action potential duration restitution causes arrhythmogenic discordant alternans. The prolongation of action potentials causes spatial dispersion of the Na(+) channel excitability, leading to inhomogeneous conduction velocity and large action potential spatial gradients. Our model simulations are consistent with the ECG patterns from TS patients, which suggest that the TS mutation is sufficient to cause the clinical phenotype and allows for the revelation of the complex interactions of currents underlying it.  相似文献   

19.
Several new models of intracellular calcium dynamics based on refined inositol-1,4,5-triphosphate-sensitive calcium channel kinetics were studied. The refined kinetic schemes take into account that a cytosolic calcium cannot inhibit inositol-1,4,5-triphosphate receptors when they are bound to inositol-1,4,5-triphosphate. The mathematical analysis of intracellular calcium dynamics based on one of these schemes allowed us to show how different types of Ca response to extracellular stimuli, such as excitability, oscillations, sustained elevation of Ca and frequency encoding can arise with a reasonably good fit to experimental data.  相似文献   

20.
The 1c subunit (DHP receptor) of the L-type Ca2+ channel is important for calcium homeostasis in cardiac muscle. The DHPr provides the primary mechanism for calcium influx during contraction. Published results demonstrate three in vitro signaling pathways that are important in the regulation of DHPr gene expression in neonatal cardiac myocytes, the protein kinase A (PKA), protein kinase C (PKC) pathways, and intracellular calcium. To determine whether these pathways are important in vivo, we treated adult rats with infusions of isoproterenol, or norepinephrine at 200 g/kg/h and assessed DHPr mRNA and protein levels. Following a 3-day infusion isoproterenol (ISO) and norepinephrine (NE) produced a small but insignificant reduction in DHPr mRNA levels. When the infusions were continued for 7 days isoproterenol increased DHPr mRNA accumulation to control levels while NE stimulated a 35% increase in DHPr mRNA levels and a 35% increase in protein abundance when compared to controls (p < 0.05). Furthermore, contractility and Ca2+ transient measurements of isolated cardiac myocytes from NE infused animals also display shortened duration of contraction/relaxation and increased intracellular free Ca2+ (DFFI) in response to electrical stimulation (p < 0.01). We conclude norepinephrine treatment alters DHPr mRNA and protein levels, and augments excitation-contraction coupling, and thus may be important for modulating cardiac calcium homeostasis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号