首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peng J  Yu J  Wang H  Guo Y  Li G  Bai G  Chen R 《The Plant cell》2011,23(11):3929-3943
Medicago truncatula is a legume species belonging to the inverted repeat lacking clade (IRLC) with trifoliolate compound leaves. However, the regulatory mechanisms underlying development of trifoliolate leaves in legumes remain largely unknown. Here, we report isolation and characterization of fused compound leaf1 (fcl1) mutants of M. truncatula. Phenotypic analysis suggests that FCL1 plays a positive role in boundary separation and proximal-distal axis development of compound leaves. Map-based cloning indicates that FCL1 encodes a class M KNOX protein that harbors the MEINOX domain but lacks the homeodomain. Yeast two-hybrid assays show that FCL1 interacts with a subset of Arabidopsis thaliana BEL1-like proteins with slightly different substrate specificities from the Arabidopsis homolog KNATM-B. Double mutant analyses with M. truncatula single leaflet1 (sgl1) and palmate-like pentafoliata1 (palm1) leaf mutants show that fcl1 is epistatic to palm1 and sgl1 is epistatic to fcl1 in terms of leaf complexity and that SGL1 and FCL1 act additively and are required for petiole development. Previous studies have shown that the canonical KNOX proteins are not involved in compound leaf development in IRLC legumes. The identification of FCL1 supports the role of a truncated KNOX protein in compound leaf development in M. truncatula.  相似文献   

2.
Zhou C  Han L  Hou C  Metelli A  Qi L  Tadege M  Mysore KS  Wang ZY 《The Plant cell》2011,23(6):2106-2124
Compound leaf development requires highly regulated cell proliferation, differentiation, and expansion patterns. We identified loss-of-function alleles at the SMOOTH LEAF MARGIN1 (SLM1) locus in Medicago truncatula, a model legume species with trifoliate adult leaves. SLM1 encodes an auxin efflux carrier protein and is the ortholog of Arabidopsis thaliana PIN-FORMED1 (PIN1). Auxin distribution is impaired in the slm1 mutant, resulting in pleiotropic phenotypes in different organs. The most striking change in slm1 is the increase in the number of terminal leaflets and a simultaneous reduction in the number of lateral leaflets, accompanied by reduced expression of SINGLE LEAFLET1 (SGL1), an ortholog of LEAFY. Characterization of the mutant indicates that distinct developmental domains exist in the formation of terminal and lateral leaflets. In contrast with the pinnate compound leaves in the wild type, the slm1 sgl1 double mutant shows nonpeltately palmate leaves, suggesting that the terminal leaflet primordium in M. truncatula has a unique developmental mechanism. Further investigations on the development of leaf serrations reveal different ontogenies between distal serration and marginal serration formation as well as between serration and leaflet formation. These data suggest that regulation of the elaboration of compound leaves and serrations is context dependent and tightly correlated with the auxin/SLM1 module in M. truncatula.  相似文献   

3.
Compound leaf development and evolution in the legumes   总被引:3,自引:0,他引:3       下载免费PDF全文
Across vascular plants, Class 1 KNOTTED1-like (KNOX1) genes appear to play a critical role in the development of compound leaves. An exception to this trend is found in the Fabaceae, where pea (Pisum sativum) uses UNIFOLIATA, an ortholog of the floral regulators FLORICAULA (FLO) and LEAFY (LFY), in place of KNOX1 genes to regulate compound leaf development. To assess the phylogenetic distribution of KNOX1-independent compound leaf development, a survey of KNOX1 protein expression across the Fabaceae was undertaken. The majority of compound-leafed Fabaceae have expression of KNOX1 proteins associated with developing compound leaves. However, in a large subclade of the Fabaceae, the inverted repeat-lacking clade (IRLC), of which pea is a member, KNOX1 expression is not associated with compound leaves. These data suggest that the FLO/LFY gene may function in place of KNOX1 genes in generating compound leaves throughout the IRLC. The contribution of FLO/LFY to leaf complexity in a member of the Fabaceae outside of the IRLC was examined by reducing expression of FLO/LFY orthologs in transgenic soybean (Glycine max). Transgenic plants with reduced FLO/LFY expression showed only slight reductions in leaflet number. Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an increase in leaflet number. This implies that KNOX1 targets, which promote compound leaf development, are present in alfalfa and are still sensitive to KNOX1 regulation. These data suggest that KNOX1 genes and the FLO/LFY gene may have played partially overlapping roles in compound leaf development in ancestral Fabaceae but that the FLO/LFY gene took over this role in the IRLC.  相似文献   

4.
5.
Plant diversity in nature is to a large extent reflected by morphological diversity of their leaves. Both simple and dissected (with multiple blades or leaflets) leaves are initiated from shoot apical meristem (SAM) in a highly ordered fashion. Similarly, development of leaflets from leaf marginal meristem (marginal blastozone) is also highly ordered. How morphological diversity of plant leaves is regulated remains an important topic of studies on plant form evolution. Here, we describe isolation and characterization of loss-of-function mutants of auxin efflux transporter MtPIN10 of a legume species, Medicago truncatula. Mtpin10 mutants exhibit defects in diverse developmental processes including leaf and leaflet development. Cross species genetic complementation demonstrates that MtPIN10 and Arabidopsis PIN1 are functional orthologs. Double mutant analyses reveal complex genetic interactions between MtPIN10 and Medicago SINGLE LEAFLET1 (SGL1) and CUP-SHAPED COTYLEDON2 (MtCUC2), three regulatory genes involved in developmental processes including dissected leaf and flower development.Key words: auxin, auxin transport, compound leaf development, MtPIN10, SGL1, MtCUC2, Medicago truncatula  相似文献   

6.
7.
Characterization of the tomato falsiflora mutant shows that fa mutation mainly alters the development of the inflorescence resulting in the replacement of flowers by secondary shoots, but also produces a late-flowering phenotype with an increased number of leaves below first and successive inflorescences. This pattern suggests that the FALSIFLORA (FA) locus regulates both floral meristem identity and flowering time in tomato in a similar way to the floral identity genes FLORICAULA (FLO) of Antirrhinum and LEAFY (LFY) of Arabidopsis. To analyse whether the fa phenotype is the result of a mutation in the tomato FLO/LFY gene, we have cloned and analysed the tomato FLO/LFY homologue (TOFL) in both wild-type and fa plants following a candidate gene strategy. The wild-type gene is predicted to encode a protein sharing 90% identity with NFL1 and ALF, the FLO/LFY-like proteins in Nicotiana and Petunia, and about 80 and 70% identity with either FLO or LFY. In the fa mutant, however, the gene showed a 16 bp deletion that results in a frameshift mutation and in a truncated protein. The co-segregation of this deletion with the fa phenotype in a total of 240 F2 plants analysed supports the idea that FA is the tomato orthologue to FLO and LFY. The gene is expressed in both vegetative and floral meristems, in leaf primordia and leaves, and in the four floral organs. The function of this gene in comparison with other FLO/LFY orthologues is analysed in tomato, a plant with a sympodial growth habit and a cymose inflorescence development.  相似文献   

8.
9.
10.
植物顶端分生组织可分为中央区,周缘区和肋区。在植物胚后发育中,侧生器官产生于顶端分生组织的周缘区。顶端分生组织和侧生器官之间的边界的建立和维持是一个非常重要的发育过程,许多调节子参与控制这个过程。拟南芥的LATERAL ORGAN BOUNDARIES(LOB)基因具有独特的表达模式,其表达的范围与上述的边界区域重合。LOB基因隶属于一个大的基因家族一,OB结构域基因家族。该家族编码的蛋白在N端具有一个保守的LOB结构域,该家族LOB基因以外的成员也参与拟南芥不同的发育过程。为了探讨在与拟南芥亲缘关系较远的豆科中LOB同源基因的功能,我们在豆科模式植物百脉根中分离了3个LOB同源基因,命名为LjLOB基因,并用RNA原位杂交方法研究了这3个基因的表达模式。研究结果显示,LjLOB1和LjLOB3都强烈地在小叶原基的基部表达,这种表达模式可能与小叶原基和复叶原基之间的边界相关。而LjLOB4则在发育中的花芽不同轮之间的边界上表达。百脉根中这3个基因具有不同的表达模式,强烈地提示它们的功能发生了分歧:LjLOB1和LjLDB3可能在复叶发育中具有重要功能;而LjLOB4则可能参与了花的发育。  相似文献   

11.
12.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

13.
Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.  相似文献   

14.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

15.
Recent work on species with simple leaves suggests that the juxtaposition of abaxial (lower) and adaxial (upper) cell fates (dorsiventrality) in leaf primordia is necessary for lamina outgrowth. However, how leaf dorsiventral symmetry affects leaflet formation in species with compound leaves is largely unknown. In four non-allelic dorsiventrality-defective mutants in tomato, wiry, wiry3, wiry4 and wiry6, partial or complete loss of ab-adaxiality was observed in leaves as well as in lateral organs in the flower, and the number of leaflets in leaves was reduced significantly. Morphological analyses and expression patterns of molecular markers for ab-adaxiality [LePHANTASTICA (LePHAN) and LeYABBY B (LeYAB B)] indicated that ab-adaxial cell fates were altered in mutant leaves. Reduction in expression of both LeT6 (a tomato KNOX gene) and LePHAN during post-primordial leaf development was correlated with a reduction in leaflet formation in the wiry mutants. LePHAN expression in LeT6 overexpression mutants suggests that LeT6 is a negative regulator of LePHAN. KNOX expression is known to be correlated with leaflet formation and we show that LeT6 requires LePHAN activity to form leaflets. These phenotypes and gene expression patterns suggest that the abaxial and adaxial domains of leaf primordia are important for leaflet primordia formation, and thus also important for compound leaf development. Furthermore, the regulatory relationship between LePHAN and KNOX genes is different from that proposed for simple-leafed species. We propose that this change in the regulatory relationship between KNOX genes and LePHAN plays a role in compound leaf development and is an important feature that distinguishes simple leaves from compound leaves.  相似文献   

16.
Molecular studies were conducted on Metrosideros excelsa to determine if the current genetic models for flowering with regard to inflorescence and floral meristem identity genes in annual plants were applicable to a woody perennial. MEL , MESAP1 and METFL1 , the fragments of LEAFY ( LFY ), APETALA1 ( AP1 ) and TERMINAL FLOWER1 ( TFL1 ) equivalents, respectively, were isolated from M. excelsa . Temporal expression patterns showed that MEL and MESAP1 exhibited a bimodal pattern of expression. Expression exhibited during early floral initiation in autumn was followed by down-regulation during winter, and up-regulation in spring as floral organogenesis occurred. Spatial expression patterns of MEL showed that it had greater similarity to FLORICAULA ( FLO ) than to LFY , whereas MESAP1 was more similar to AP1 than SQUAMOSA . The interaction between MEL and METFL1 was more similar to the interaction between FLO and CENTRORADIALIS than that between LFY and TFL1 . Consequently, the three genes from M. excelsa fit a broader herbaceous model encompassing Antirrhinum as well as Arabidopsis , but with differences, such as the bimodal pattern of expression seen with MEL and MESAP1 . In mid-winter, at the time when both MEL and MESAP1 were down-regulated, GA1 was below the level of detection in M. excelsa buds. Even though application of gibberellin inhibits flowering in members of the Myrtaceae, MEL was responsive to gibberellin with expression in juvenile plants up-regulated by GA3. However, MESAP1 was not up-regulated indicating that meristem competence was also probably required to promote flowering in M. excelsa .  相似文献   

17.
Yu Q  Moore PH  Albert HH  Roader AH  Ming R 《Cell research》2005,15(8):576-584
The homologous genes FLORICAULA (FLO) in Antirrhinum and LEAFY (LFY) in Arabidopsis are known to regulate the initiation of flowering in these two distantly related plant species. These genes are necessary also for the expression of downstream genes that control floral organ identity. We used Arabidopsis LFY cDNA as a probe to clone and sequence a papaya ortholog of LFY, PFL. It encodes a protein that shares 61% identity with the Arabidopsis LFY gene and 71% identity with the LFY homologs of the two woody tree species: California sycamore (Platanus racemosa) and black cottonwood (Populus trichocarpa). Despite the high sequence similarity within two conserved regions, the N-terminal proline-rich motif in papaya PFL differs from other members in the family. This difference may not affect the gene function of papaya PFL, since an equally divergent but a functional LFY ortholog NEEDLY of Pinus radiata has been reported. Genomic and BAC Southern analyses indicated that there is only one copy of PFL in the papaya genome. In situ hybridization experiments demonstrated that PFL is expressed at a relatively low level in leaf primordia, but it is expressed at a high level in the floral meristem. Quantitative PCR analyses revealed that PFL was expressed in flower buds of all three sex types - male, female, and hermaphrodite with marginal difference between hermaphrodite and unisexual flowers. These data suggest that PFL may play a similar role as LFY in flower development and has limited effect on sex differentiation in papaya.  相似文献   

18.
19.
Ezhova TA 《Genetika》1999,35(11):1522-1537
A vast amount of information on the genetic control of plant development has been obtained in Arabidopsis thaliana with classical genetic and molecular biological methods. The genes involved in multistep regulation of floral morphogenesis have been identified. The formation of floral meristem is controlled by the LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), APETALA1 (AP1), and APETALA2 (AP2) genes. Studies of the abruptus and bractea recessive monogenic mutants from the collection of the Department of Genetics and Selection, Moscow State University, showed that the ABRUPTUS (ABR) and BRACTEA (BRA) genes also play an important role in inflorescence differentiation. The ABR gene controls the early formation of organ primordia on the inflorescence and the formation of floral organ primordia after floral initiation. Further differentiation of inflorescence organ primordia in vegetative or generative organs depends on the activity of the LFY gene, and floral organ identity is determined by the homeotic genes. Presumably, the major function of the ABR gene is to determine the auxin polar transport. The BRA gene suppresses the development of bracts on the inflorescence and constrains cell division at the base of primordia of rosette and cauline leaves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号