共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
W. Wei T. H. Schuler S. J. Clark C. N. Stewart Jr & G. M. Poppy 《Journal of Applied Entomology》2008,132(1):1-11
The movement of Bacillus thuringiensis (Berliner) (Bt) Cry1Ac endotoxin through high trophic levels was assessed to help elucidate the effects of Bt toxin on non‐target insects. The diamondback moth (Plutella xylostella L., Lepidoptera: Plutellidae), the parasitic wasp (Cotesia vestalis Haliday, Hymenoptera: Braconidae) and the predatory green lacewing Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae) were used as a model system in this laboratory study. Bt‐resistant P. xylostella larvae fed Cry1Ac‐expressing transgenic oilseed rape (OSR, Brassica napus L., Cruciferae), before and after parasitization by C. vestalis, consumed Cry1Ac with the ingested plant material but only a proportion of Cry1Ac consumed was recovered from the bodies and faeces of P. xylostella larvae. Cry1Ac was not detected in newly emerged parasitoid larvae. In contrast, Cry1Ac was detected in C. carnea larvae fed on resistant P. xylostella larvae reared on Bt OSR. However, no Cry1Ac could be detected in C. carnea larvae when the lacewings were transferred to P. xylostella larvae reared on conventional OSR and tested 24–48 h. The metabolizing ability of Cry1Ac is discussed for the larvae of P. xylostella and C. carnea. 相似文献
3.
Overbrowsing by ungulates decimates plant populations and reduces diversity in a variety of ecosystems, but the mechanisms by which changes to plant community composition influence other trophic levels are poorly understood. In addition to removal of avian nesting habitat, browsing is hypothesized to reduce bird density and diversity through reduction of insect prey on browse‐tolerant hosts left behind by deer. In this study, we excluded birds from branches of six tree species to quantify differences in songbird prey removal across trees that vary in deer browse preference. Early in the breeding season, birds preyed on caterpillars at levels proportional to their abundance on each host. Combining these data with tree species composition data from stands exposed to experimentally controlled deer densities over 30 years ago, we tested whether overbrowsing by white‐tailed deer reduces prey biomass long after deer densities are reduced. Our analysis predicts total prey availability in the canopy of regenerating forests is fairly robust to historic exposure to high deer densities, though distribution of prey available from host species changes dramatically. This predicted compensatory effect was unexpected and is driven by high prey abundance on a single host tree species avoided by browsing deer, Prunus serotina. Thus, while we confirm that prey abundance on host trees can act as a reliable predictor for relative prey availability, this study shows that quantifying prey abundance across host trees is essential to understanding how changes in tree species composition interact with ungulate browse preference to determine prey availability for songbirds. 相似文献
4.
S. Steinberg M. Dicke L. E. M. Vet R. Wanningen 《Entomologia Experimentalis et Applicata》1992,63(2):163-175
Upon initiating a research project on the role of volatile infochemicals in the tritrophic system Cotesia (= Apanteles) glomerata (L.)-Pieris brassicae (L.)-cabbage, a bioassay was developed to investigate the response of C. glomerata. The bioassay should be effective in terms of high responsiveness and minimum variability and constructed through a comparative approach. Twenty seven treatments, organized in a factorial randomized block design, compared the effect of three bioassay set-ups (glasshouse flight chamber, wind-tunnel and Y-tube olfactometer), three parasitoid age groups (1–2, 4–5 and 8–9 days old females), three pre-treatment experiences (naive, damage experienced and oviposition experienced wasps) and the day-to-day effect on response of C. glomerata to clean cabbage (CC) and planthost complex (PHC) in a dual choice test.The best results with regard to the strength and consistency of response to the PHC were obtained in the glasshouse flight-chamber by 4–5 days old female wasps with either damage or oviposition experience (94 and 90%, respectively). It is therefore recommended as a suitable bioassay for studying the role of volatile infochemicals in host-habitat location by C. glomerata.A day-to-day variation in response was found in the glasshouse and wind-tunnel. It was correlated with the direction of change in barometric pressure within the time period of the experiment, showing that steadily increasing atmospheric pressure yields a significantly higher response than steadily decreasing or fluctuating barometric flux. To control for the day effect it is suggested to conduct further experiments in a block design, having day as a block. Several aspects of the infochemical ecology of C. glomerata are discussed. 相似文献
5.
6.
Maureen E. Wakefield Howard A. Bell Angharad M. R. Gatehouse 《Agricultural and Forest Entomology》2010,12(1):19-27
- 1 Adult female Eulophus pennicornis require a source of nutrition, provided by sources such as pollen, nectar and honeydew or by host feeding, to promote longevity and facilitate egg production. There is potential for parasitoids to be exposed directly to contaminants, including gene products in transgenic crops, through feeding on plant materials, honeydew or hosts. Among such potential contaminants are lectins such as Galanthus nivalis agglutinin (GNA) and concanavalin agglutinin (Con A).
- 2 The effect of direct exposure to honey diets containing GNA and Con A on the longevity and fecundity of E. pennicornis was examined. These lectins have been expressed in a number of plant species for the control for various insect pests. Both GNA and Con A significantly reduced longevity and fecundity at the highest concentration used (0.5% w/v). The effect on fecundity was shown to be related to a reduction in longevity.
- 3 Examination of the gustatory response of adult female E. pennicornis to honey diet containing 1% w/v GNA or Con A revealed no significant differences in consumption rate on first exposure. A significant reduction in the time spent feeding on diet containing 1% Con A was found on the second exposure to the diet. This could have been the result of either a conditioned aversion response or the intoxication of the insect. The effect of Con A on longevity and fecundity could have been, in part, a result of reduced food intake.
- 4 Studies on nutrition and egg resorption demonstrated that the availability of honey solution prolongs the longevity of E. pennicornis and the lack of a source of nutrition promotes oosorption.
- 5 A greater understanding of feeding behaviour and ovigeny is required to understand fully the potential ecological consequence of transgenic crops on parasitoid species through routes of direct exposure to transgene products.
7.
Peng‐Cheng Liu Jin Men Bin Zhao Jian‐Rong Wei 《Entomologia Experimentalis et Applicata》2017,163(3):281-286
Anastatus disparis (Ruschka) (Hymenoptera: Eupelmidae) is an egg parasitoid and considered a potential biological control agent of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Only male offspring of A. disparis emerge from single eggs of L. dispar in the laboratory, and A. disparis exhibits low parasitism on L. dispar in the field. We therefore selected several lepidopteran species with various body sizes to evaluate the optimal egg size for hosting A. disparis. In addition, we explored whether the nutritional content of a single L. dispar egg influences the sex of A. disparis offspring and why female offspring can be reared from L. dispar eggs in the field. The results indicated that host egg size decisively influenced the body size and sex ratio of the parasitoid offspring. Therefore, larger hosts, especially the largest eggs of Antheraea pernyi Guérin‐Méneville (Saturniidae), might increase the fitness of A. disparis females. Lymantria dispar eggs concealed in the larger egg shell of A. pernyi produced female A. disparis, suggesting that adult A. disparis should prefer hosts with larger bodies and that the nutritional content of L. dispar eggs did not play a decisive role in the sex allocation of A. disparis. The results also indicated that the egg mass and the fur cover of L. dispar egg masses might be the key factors inducing female A. disparis to lay female offspring in L. dispar eggs. 相似文献
8.
Gaylord A. Desurmont Angela Köhler Daniel Maag Diane Laplanche Hao Xu Julien Baumann Camille Demairé Delphine Devenoges Mara Glavan Leslie Mann Ted C. J. Turlings 《Ecology and evolution》2017,7(16):6304-6313
In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti‐predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re‐attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish‐fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate‐deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti‐predator defense needs to be further evaluated in the field. 相似文献
9.
Jelmer A. Elzinga Jeffrey A. Harvey & Arjen Biere 《Entomologia Experimentalis et Applicata》2003,108(2):95-106
Gregarious koinobiont parasitoids attacking a range of host sizes have evolved several mechanisms to adapt to variable host resources, including the regulation of host growth, flexibility in larval development rate, and adjustment of clutch size. We investigated whether the first two mechanisms are involved in responses of the specialist gregarious parasitoid Microplitis tristis Nees (Hymenoptera: Braconidae) to differences in the larval weight and parasitoid load of its host Hadena bicruris Hufn. (Lepidoptera: Noctuidae). In addition, we examined the effects of parasitism on food consumption by the host. Parasitoids were offered caterpillars of different weight from all five instars, and parasitoid fitness correlates, including survival, development time, and cocoon weight, were recorded. Furthermore, several host growth parameters and food consumption of parasitized and unparasitized hosts were measured. Our results show that M. tristis responds to different host weights by regulating host growth and by adjusting larval development rate. In hosts with small weights, development time was increased, but the increase was insufficient to prevent a reduction in cocoon weight, and as a result parasitoids experienced a lower chance of successful eclosion. Cocoon weight was negatively affected by parasitoid load, even though host growth was positively affected by parasitoid load, especially in hosts with small weights. Later instars were more optimal for growth and development of M. tristis than early instars, which might reflect an adaptation to the life‐history of the host, whose early instars are usually concealed and inaccessible for parasitism on its food plant, Silene latifolia Krause (Caryophyllaceae). Parasitism by M. tristis greatly reduced total host food consumption for all instar stages. Whether plants can benefit directly from the attraction of gregarious koinobiont parasitoids of their herbivores is a subject of current debate. Our results indicate that, in this system, the attraction of a gregarious koinobiont parasitoid can directly benefit the plant by reducing the number of seeds destroyed by the herbivore. 相似文献
10.
A. Townsend Peterson Richard Williams & Guojun Chen 《Entomologia Experimentalis et Applicata》2007,125(1):39-44
Asian populations of gypsy moths, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), remain poorly characterized – indeed, they are not presently accorded any formal taxonomic status within the broader species. Their ecology is similarly largely uncharacterized in the literature, except by assumption that it will resemble that of European populations. We developed ecological niche models specific to Asian populations of the species, which can in turn be used to identify a potential geographic distributional area for the species. We demonstrated statistically significant predictivity of distributional patterns within the East Asian range of these populations; projecting the Asian ecological niche model to Europe, correspondence with European distributions was generally good, although some differences may exist; projecting the ecological niche model globally, we characterized a likely potential invasive distribution of this set of populations across the temperate zone of both Northern and Southern Hemisphere. 相似文献
11.
Laboratory scale experiments were conducted in order to assess the potential effect of Bacillus thuringiensis‐corn leaf material on the parasitized herbivore Chilo partellus Swinhoe (Lepidoptera: Crambidae) and on its parasitoid Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Food consumption and relative consumption rate of parasitized hosts exposed to Bt‐corn leaf‐material were strongly reduced compared to the control. The number of hosts allowing parasitoid larvae to complete their development was also reduced in the Bt group. Moreover, the fresh weight of parasitoid pupae and the dry weight of parasitoid adults was lower than in the control. Only in the Bt group, were strong negative correlations found between food intake by the host, and the number of parasitoid cocoons. Strong positive correlations were also only found in the Bt group, between food intake and parasitoid development time. As effects of Bt on the oviposition behaviour of C. flavipes could be excluded, differences between the Bt group and the control could only be due to the effect of Bt toxin on the parasitoid larva developing inside the host. Whenever food consumption can be measured, the methods used in this study are proposed as a model for future risk assessments on different types of insect‐resistant transgenic plants, herbivores, parasitoids, and predators. 相似文献
12.
Michael E. Montgomery 《Journal of insect physiology》1982,28(5):437-442
Lymantria dispar larvae were reared on a wheat germ-based artificial diet from egg eclosion until pupation. Utilization efficiency of dietary nitrogen underwent an age-specific decrease from 75% in the first instar to 54 and 43% for last-instar female and male larvae, respectively. Relative rates (mg/day/mg biomass) of nitrogen consumption and assimilation also decreased during larval development, but the excretion rate of nitrogen was constant for all instars and both sexes. Larval % nitrogen decreased as the larvae matured, while the percentage in the frass increased. These data suggest that need for nitrogen decreases as the larva matures. While L. dispar is comparatively inefficient at assimilating dietary nitrogen, over one-half of that assimilated by the female larva is transferred to egg production by the adult. 相似文献
13.
Girling RD Stewart-Jones A Dherbecourt J Staley JT Wright DJ Poppy GM 《Proceedings. Biological sciences / The Royal Society》2011,278(1718):2646-2653
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography-mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant-herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment. 相似文献
14.
The potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) is a major agricultural pest of solaneceous crops in warm countries worldwide. The encyrtid polyembryonic parasitoid Copidosoma koehleri (Blanchard) has been successfully introduced for biological control of the moth in potato fields in South Africa and Australia; however, augmentative releases of the parasitoid in trial plots and in commercial potato fields in Israel did not reduce pest populations or infestation levels more than chemical treatment. Copidosoma koehleri accounted for 4–5% of parasitism on tuber moth caterpillars, while most parasitism was due to local species of larval parasitoids. The abundance and composition of local parasitoids did not differ between C. koehleri release plots and conventionally treated control plots. These findings can be interpreted as failure of the introduced parasitoids to survive and locate their hosts, or as mortality of C. koehleri within hosts in the field. Sentinel hosts, placed in trial plots and collected after 24 h, were rarely parasitised by C. koehleri, supporting the first interpretation. To test the second hypothesis, hosts parasitised by C. koehleri were placed in field plots for a week, collected, and reared out in the laboratory. The emergence rates of C. koehleri from these hosts resembled those of lab-reared controls, suggesting that mortality within hosts in the field is not a major cause of C. koehleri's poor biocontrol performance. 相似文献
15.
16.
Luke P. Rapley† Geoff R. Allen† Brad M. Potts‡ 《Agricultural and Forest Entomology》2004,6(3):205-213
Abstract 1 Eucalyptus globulus Labill. exhibited consistent intraspecific variation in oviposition choice by Mnesampela privata (Guenée) (Lepidoptera: Geometridae) in field surveys of host plants that had been designated, based on the prior season's defoliation levels, as resistant or susceptible to M. privata. At both field sites significantly fewer egg batches were found on resistant compared to susceptible trees. 2 In cage bioassays we demonstrated a significant oviposition preference by M. privata, with over two‐fold greater number of egg batches laid on foliage sprigs from susceptible compared to resistant trees. Despite differences in tree oviposition choice, we found no evidence in the field or the laboratory of adult females adjusting egg batch size in accordance to oviposition preference. 3 Caged larval survival, development times and pupal weight did not vary significantly between resistant and susceptible trees. Similarly, in a laboratory feeding experiment, neonates utilized resistant and susceptible foliage equally. 4 Larval mortality in the field attributed to natural enemies did not vary significantly between resistant and susceptible trees, nor did the percentage of Telenomus sp. parasitism of M. privata eggs within a batch and batches per tree. 5 Failure to associate either larval performance or natural enemy efficacy with the observed intraspecific variation in E. globulus susceptibility to M. privata oviposition indicates that some other unidentified factors drive the evolution of host selection for oviposition. 相似文献
17.
Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant–herbivore–natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana. 相似文献
18.
报道了毒蛾科16属幼期的毛瘤特性及其分属检索表,并对毒蛾科各类中存在的2个类型进行了讨论。 相似文献
19.
The slow growth‐high mortality hypothesis (SG‐HG) predicts that slower growing herbivores suffer greater mortality due to a prolonged window of vulnerability. Given diverse plant–herbivore–natural enemy systems resulting from different feeding ecologies of herbivores and natural enemies, this hypothesis might not always be applicable to all systems. This is evidenced by mixed support from empirical data. In this study, a meta‐analysis of the SG‐HM hypothesis for insects was conducted, aiming to find conditions that favor or reject SG‐HM. The analysis revealed significant within‐ and between‐group heterogeneity for almost all explanatory variables and overall did not support SG‐HM. In this analysis, SG‐HM was supported when any of the following 5 conditions was met: (1) host food consisted of artificial diet; (2) herbivore growth was measured as larval mass; (3) herbivores were generalists; (4) no or multiple species of natural enemies were involved in the study; and (5) parasitoids (i.e., parasitic insects) involved in the study were gregarious. SG‐HM was rejected when any of the following 5 conditions was met: (1) herbivores were from the order Hymentoptera; (2) parasitoids from more than 1 order caused herbivore mortality; (2) parasitoids were specialists; (3) parasitoids were solitary; (4) parasitoids were idiobionts or koinobionts; and (5) single species of natural enemy caused mortality of specialist herbivores. All known studies investigated herbivore mortality for a short period of their life cycle. Researchers are encouraged to monitor herbivore mortality during the entire window of susceptibility or life cycle using life tables. Studies involving multiple mortality factors (i.e., both biotic and abiotic) or multiple natural enemy species are also encouraged since herbivores in nature face a multitude of risks during the entire life cycle. More comprehensive studies may increase our understanding of factors influencing the relationships between herbivore growth and mortality. 相似文献
20.
Abstract 1 Predation by small mammals has previously been shown to be the largest source of mortality in low‐density gypsy moth, Lymantria dispar (L.), populations in established populations in north‐eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. 2 We compared small mammal communities and levels of predation on gypsy moth pupae among five different oak‐dominated forest types along this insect's western expanding population front in Wisconsin. Comparisons of predator impact can provide critical information for predicting variation in susceptibility among forest types. 3 The results indicated that small mammals caused more mortality than did invertebrates. 4 Both abundance of Peromyscus sp. predators and predation levels were lower in urban and xeric forest types than in mesic sites. 5 These results suggest that, because predation pressures will probably be greater in the mesic sites, gypsy moths may be less likely to develop outbreaks in these habitats, and that defoliation will probably be more frequent in urban and xeric oak‐dominated sites. 相似文献