首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Connexin 43 (Cx43), a gap junction protein expressed in differentiated granulosa cells, is necessary for normal follicular development. Cx43 expression and regulation by epidermal growth factor (EGF) were characterized in immature rabbit granulosa cells. Cx43 mRNA was expressed in the granulosa cells of primary follicles, but was undetectable in primordial follicles. Abundant expression of Cx43 mRNA was maintained in the granulosa cells of growing follicles through maturity. Granulosa cells were isolated from early preantral follicles and maintained in monolayer cultures for 72 hr. After the first 24 hr of culture, they were maintained for 48 hr in serum-free medium supplemented with 0, 1, 5, or 10 ng/ml of mouse EGF. Granulosa cell proteins were isolated, solubilized, and evaluated for Cx43 by Western blot analysis using antibodies to rat Cx43. Relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) were increased (P < 0.05) by EGF in a dose-dependent manner. Northern blot analysis of RNA from cultured granulosa cells demonstrated increased amounts of Cx43 mRNA in the EGF treated cultures (10 ng EGF/ml) relative to controls (P < 0.03). In summary, Cx43 gap junctions are synthesized in granulosa cells following the onset of folliculogenesis in vivo and their expression is enhanced by EGF in vitro.  相似文献   

3.
4.
The C-terminal (CT) domain of connexin43 (Cx43) is thought to be important in the control of gap junction function via: a.) CT phosphorylation-dependent control of gap junction assembly and gating, b.) interactions of CT with key regulatory binding partners. To more closely examine CT-dependent regulation, we have expressed a hemagglutinin-Cx43CT (amino acids 235-382) fusion protein in Normal Rat Kidney (NRK) cells under a tetracycline-responsive inducible promoter. Western blot analysis shows that Cx43CT expression is markedly induced by at least 48 h oftreatment with the tetracycline analogue, doxycycline. Furthermore, Cx43CT is modified within the cell, as several treatments/conditions that increase endogenous Cx43 phosphorylation induced a mobility shift in Cx43CT. Treatment with kinase activators, including epidermal growth factor (EGF) and the tumor promoting phorbol ester 12-O-tetradecanylphorbol-13-acetate (TPA), caused a shift in the mobility of the Cx43CT in a manner consistent with the mobility shift observed upon increased phosphorylation of endogenous Cx43. Similarly, Cx43CT in mitotic cells is extensively shifted, consistent with reports which show that Cx43 is phosphorylated to a unique phosphoisoform in mitotic cells. These results indicate that the Cx43CT can interact with at least some of the kinases that phosphorylate endogenous Cx43 in cells and possibly modulate the effects of kinase activation on gap junctional communication.  相似文献   

5.
6.
7.
Casein kinase 1 regulates connexin-43 gap junction assembly   总被引:11,自引:0,他引:11  
Phosphorylation of members of the connexin family of gap junction proteins has been correlated with gap junction assembly, but the mechanisms involved remain unclear. We have examined the role of casein kinase 1 (CK1) in connexin-43 (Cx43) gap junction assembly. Cellular co-immunoprecipitation experiments and in vitro CK1 phosphorylation reactions indicate that CK1 interacted with and phosphorylated Cx43, initially on serine(s) 325, 328, or 330. (32)P(i)-Metabolically labeled cells treated with CKI-7, a specific CK1 inhibitor, showed a reduction in Cx43 phosphorylation on site(s) that can be phosphorylated by CK1 in vitro. To examine CK1 function, normal rat kidney cells were treated with CKI-7, and Cx43 content was analyzed by Triton X-100 extraction, cell-surface biotinylation, and immunofluorescence. Western blot analysis indicated a slight increase in total Cx43, whereas gap junctional (Triton-insoluble) Cx43 decreased, and non-junctional plasma membrane Cx43 increased (as detected by cell surface biotinylation). Immunofluorescence experiments in the presence of CK1 inhibitor showed increases in Cx43 plasma membrane localization but not necessarily accumulation at cell-cell interfaces. Decreased gap junctional and phosphorylated Cx43 was also detected when cells were treated with IC261, a CK1 inhibitor specific for delta or epsilon isoforms. These data suggest CK1delta could regulate Cx43 gap junction assembly by directly phosphorylating Cx43.  相似文献   

8.
High-resolution two-dimensional sodium dodecyl sulfate-polyacrylamide (2D-SDS) gel electrophoresis combined with computerized analysis of gel images was used to construct and analyze protein databases for two stages of preimplantation mouse embryogenesis, the compacted eight-cell stage and the fully expanded blastocyst stage. These stages were chosen for their ease in identification of multiple synchronous embryos. Synchronous cohorts of 30–50 embryos were labelled with L-[35S]methionine for 2 hr. The embryos were then lysed in 30 μl hot SDS sample buffer, and the lysates were stored at ?80°C until the gels were run. Five replicates were run for eight-cell embryos, and four for blastocyst-stage embryos. The samples were processed for 2D gel electrophoresis and fluorography; multiple exposures were made. Gel images were analyzed using the PDQUEST system, and databases were constructed. Analysis of the databases for both developmental stages showed high reproducibility of protein spots in multiple gel images. Of 1,674 total spots in eight-cell embryo standards, >79% of spots had a percentage error (S.E.M./average) <50%, and >45% had a percentage error <30%. Similarly, of 1,653 total spots in blastocyst-stage embryo standards, 74% of spots had a percentage error <50%, and approximately 47% of spots had a percentage error <30%. Forty-three spots (approximately 3% of the total spots) were found to be detected only in the eight-cell stage, while 75 spots were detected solely in the blastocyst stage. Sixty-nine proteins showed a greater than threefold increase in isotope incorporation from the eight-cell to the blastocyst stage, with a percentage error <50% in both the eight-cell and the blastocyst stages. In contrast, 41 of the proteins showed a decrease during this period. Analysis of the protein databases described in this study has allowed us to document the overall quantitative changes in proteins from the compacted eight-cell stage to the blastocyst stage of mouse preimplantation development. These databases provide a valuable tool for further detailed quantitative analysis of specific proteins associated with developmental events. In addition they will permit analysis of the effects of environmental factors, such as growth factors, on early embryo development. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   

10.
To examine the mechanism(s) and pathways of gap junction formation and removal a novel and reversible inhibitor of protein secretion, ilimaquinone (IQ), was employed. IQ has been reported to cause the vesiculation of Golgi membranes, block protein transport at the cis-Golgi and depolymerize cytoplasmic microtubules. Connexin43 (Cx43) immunolabeling and dye microinjection experiments revealed that gap junction plaques were lost and intercellular communication was inhibited following IQ treatment for 1 hr in BICR-M1Rk rat mammary tumor cells and for 2 hr in normal rat kidney (NRK) cells. Gap junction plaques and intercellular communication recovered within 2 hr when IQ was removed. IQ, however, did not affect the distribution of zonula occludens-1, a protein associated with tight junctions. Western blot analysis revealed that the IQ-induced loss of gap junction plaques was accompanied by a limited reduction in the highly phosphorylated form of Cx43, previously shown to be correlated with gap junction plaques. The presence of IQ inhibited the formation of new gap junction plaques in BICR-M1Rk cells under conditions where preexisting gap junctions were downregulated by brefeldin A treatment. Treatment of BICR-M1Rk and NRK cells with other microtubule depolymerization agents did not inhibit plaque formation or promote rapid gap junction removal. These findings suggest that IQ disrupts intercellular communication by inhibiting the events that are involved in plaque formation and/or retention at the cell surface independent of its effects on microtubules. Our results also suggest that additional factors other than phosphorylation are necessary for Cx43 assembly into gap junction plaques. Received: 16 January 1996/Revised: 20 September 1996  相似文献   

11.
Prior to confluence, cultures of Madin Darby canine kidney (MDCK) cells expressed gap junctional communication, as assessed by fluorescent dye transfer, as well as relatively high levels of an anti-connexin43 immunoreactive component referred to as connexin43 (Cx43). After confluence, dye coupling and levels of Cx43 were dramatically reduced. Immunofluorescence analysis of the distribution of Cx43 in subconfluent cultures showed punctate labeling on the plasma membrane at regions of cell apposition and a more diffuse labeling in perinuclear regions. Western blots of total cell homogenates showed that the dephosphorylated form of Cx43 was more abundant than the phosphorylated forms. Phosphorylation of Cx43 was not significantly affected by 8-Bromo-cAMP or 8-Bromo-cGMP. However, 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited dye coupling and induced an increase in the amount of phosphorylated forms of Cx43 at the expense of the dephosphorylated form. This effect occurred as rapidly as 5 min after TPA treatment without apparent changes in distribution of Cx43 or cell morphology. These results suggest that second messenger pathways involving protein kinase C, but not cAMP- or cGMP-dependent protein kinase, led to changes in electrophoretic mobility of Cx43, revealed by Western blot, consistent with an alteration in the state of phosphorylation of the gap junction protein. Treatments with staurosporine, a protein kinase inhibitor, or okadaic acid, a protein phosphatase inhibitor, either alone or in combination with TPA, indicated that the abundance of the dephosphorylated form of Cx43 in MDCK cells was due to low kinase activity. It was also found that lowering the concentration of extracellular Ca2+, which reduced cell contact, did not affect the abundance, the state of phosphorylation, or the TPA-induced phosphorylation of Cx43. These results suggest that neither extracellular Ca2+ nor cell contact is required for basal or TPA-induced phosphorylation of Cx43.  相似文献   

12.
Altered phosphorylation and trafficking of connexin 43 (Cx43) during acute ischemia contributes to arrhythmogenic gap junction remodeling, yet the critical sequence and accessory proteins necessary for Cx43 internalization remain unresolved. 14‐3‐3 proteins can regulate protein trafficking, and a 14‐3‐3 mode‐1 binding motif is activated upon phosphorylation of Ser373 of the Cx43 C‐terminus. We hypothesized that Cx43Ser373 phosphorylation is important to pathological gap junction remodeling. Immunofluorescence in human heart reveals the enrichment of 14‐3‐3 proteins at intercalated discs, suggesting interaction with gap junctions. Knockdown of 14‐3‐3τ in cell lines increases gap junction plaque size at cell–cell borders. Cx43S373A mutation prevents Cx43/14‐3‐3 complexing and stabilizes Cx43 at the cell surface, indicating avoidance of degradation. Using Langendorff‐perfused mouse hearts, we detect phosphorylation of newly internalized Cx43 at Ser373 and Ser368 within 30 min of no‐flow ischemia. Phosphorylation of Cx43 at Ser368 by protein kinase C and Ser255 by mitogen‐activated protein kinase has previously been implicated in Cx43 internalization. The Cx43S373A mutant is resistant to phosphorylation at both these residues and does not undergo ubiquitination, revealing Ser373 phosphorylation as an upstream gatekeeper of a posttranslational modification cascade necessary for Cx43 internalization. Cx43Ser373 phosphorylation is a potent target for therapeutic interventions to preserve gap junction coupling in the stressed myocardium.   相似文献   

13.
Modulation of gap junction structures and gap junctional communication is important in maintaining tissue homeostasis and can be controlled via phosphorylation of connexin 43 (Cx43) through several different signaling pathways. Transformation of cells by v-src has been shown to down-regulate gap junction communication coincident with an increase in tyrosine phosphorylation on Cx43. Activation of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) also lead to down-regulation via phosphorylation on specific serine residues. Using phosphospecific anti-Cx43 antibodies generated by the authors' laboratory to specific tyrosines (src substrates) and serine residues (MAPK and PKC substrates) to probe LA-25 cells (which express temperature-sensitive v-src), the authors show that distinct tyrosine and serines residues are phosphorylated in response to v-src activity. They show that tyrosine phosphorylation appears to occur predominantly in gap junction plaques when src is active. In addition, src activation led to increased phosphorylation of apparent MAPK and PKC sites in Cx43. These results indicate all three signaling pathways could contribute to gap junction down-regulation during src transformation in LA-25 cells.  相似文献   

14.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.  相似文献   

15.
Park JH  Lee MY  Heo JS  Han HJ 《Cell proliferation》2008,41(5):786-802
Abstract. Objectives: The gap junction protein, connexin (Cx), plays an important role in maintaining cellular homeostasis and cell proliferation by allowing communication between adjacent cells. Therefore, this study has examined the effect of epidermal growth factor (EGF) on Cx43 and its relationship to proliferation of mouse embryonic stem cells. Materials and methods: Expressions of Cx43, mitogen‐activated protein kinases (MAPKs) and cell cycle regulatory proteins were assessed by Western blot analysis. Cell proliferation was assayed with [3H]thymidine incorporation. Intercellular communication level was measured by a scrape loading/dye transfer method. Results: The results showed that EGF increased the level of Cx43 phosphorylation in a time‐ (≥5 min) and dose‐ (≥10 ng/mL) dependent manner. Indeed, EGF‐induced increase in phospho‐Cx43 level was significantly blocked by either AG 1478 or herbimycin A (tyrosine kinase inhibitors). EGF increased Ca2+ influx and protein kinase C (PKC) translocation from the cytosolic compartment to the membrane compartment. Moreover, pre‐treatment with BAPTA‐AM (an intracellular Ca2+ chelator), EGTA (an extracellular Ca2+ chelator), bisindolylmaleimide I or staurosporine (PKC inhibitors) inhibited the EGF‐induced phosphorylation of Cx43. EGF induced phosphorylation of p38 and p44/42 MAPKs, and this was blocked by SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a p44/42 MAPK inhibitor), respectively. EGF or 18α‐glycyrrhetinic acid (GA; a gap junction inhibitor) increased expression levels of the protooncogenes (c‐fos, c‐jun and c‐myc), cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin‐dependent kinase 2 (CDK2), CDK4 and p‐Rb], [3H]thymidine incorporation and cell number, but decreased expression levels of the p21WAF1/Cip1 and p27Kip1, CDK inhibitory proteins. Transfection of Cx43 siRNA also increased the level of [3H]thymidine incorporation and cell number. EGF, 18α‐GA or transfection of Cx43 siRNA increased 2‐DG uptake and GLUT‐1 protein expression. Conclusions: EGF‐induced phosphorylation of Cx43, which was mediated by the Ca2+/PKC, p44/42 and p38 MAPKs pathways, partially contributed to regulation of mouse embryonic stem cell proliferation.  相似文献   

16.
Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.  相似文献   

17.
Western blotting studies revealed that connexin43 (Cx43), one of the major gap junction proteins in human vascular endothelial cells, is posttranslationally modified during mitosis. This mitosis-specific modification results in a Cx43 species that migrates as a single protein band and was designated Cx43m. Cx43m was shown to be the result of additional Ser/Thr phosphorylation as indicated by: (a) the increased gel mobility induced by both alkaline phosphatase and the Ser/ Thr-specific protein phosphatase-2A (PP2A) and (b) the removal of virtually all 32Pi from Cx43m by PP2A. Immunofluorescent confocal microscopy of mitotic cells revealed that Cx43 is intracellularly located, while in nonmitotic cells Cx43 is located at regions of cell–cell contact. Dye coupling studies revealed that mitotic endothelial cells were uncoupled from each other and from nonmitotic cells. After cytokinesis, sister cells resumed cell coupling independent of de novo protein synthesis. The mitosis-specific phosphorylation of Cx43 correlates with the transient loss of gap junction intercellular communication and redistribution of Cx43, suggesting that a protein kinase that regulates gap junctions is active in M-phase.  相似文献   

18.
The ability of the gap junction phosphoprotein connexin-43 (Cx43) to inhibit DNA synthesis in primary cardiomyocytes is regulated by serine (S) 262, a protein kinase C phosphorylation site that also affects metabolic coupling. We have now examined if the S262-regulated growth suppression is operating in transformed cells and if so whether it depends on gap junction channel forming ability. Serine 262 became phosphorylated in response to protein kinase C stimulation in HEK293 cells transiently expressing either Cx43 or the non-channel-forming carboxy-terminal tail of Cx43 (Cx43CT). Expression of either wild type Cx43 or Cx43CT inhibited DNA synthesis, as did their mutated versions simulating lack of phosphorylation by carrying an S262-to-alanine substitution. The ability to inhibit DNA synthesis was eliminated when expressing mutated versions of either Cx43 or Cx43CT simulating constitutive phosphorylation by carrying an S262-to-aspartate substitution. We conclude that S262 phosphorylation cancels growth inhibition by Cx43 independently of channel-forming ability.  相似文献   

19.
To evaluate the changes in intercellular communication through gap junctions in detrusor overactivity (DO), we studied 23 adult female Wistar rats with DO after partial outflow obstruction (DO group) and 13 sham-operated rats (control group). The two groups were compared by means of urodynamics, light and electron microscopy, expression of Cx40, Cx43, and Cx45 mRNA genes with RT-PCR, Cx43 protein with Western blot analysis, and functional intercellular communication with scrape loading dye transfer (SLDT) and fluorescence recovery after photobleaching (FRAP). The number of gap junctions and the expression of connexin mRNA and Cx43 protein were increased in DO rats, and intercellular communication through gap junctions increased after 6 wk of partial outflow obstruction as assessed with SLDT and FRAP techniques. The findings provide a theoretical rationale for using Cx43 antagonists and gap junction inhibitors in the treatment of patients with overactive detrusor secondary to partial bladder outflow obstruction.  相似文献   

20.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号