首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesodermal differentiation of dorsal marginal zone (DMZ) before and after invagination was analyzed by a series of combination experiments with different kinds of ectoderm.
Lower DMZ of early gastrula didn't show any axial-mesoderm (notochord and somitic mesoderm) but lateral mesoderm (mesenchyme, mesothelium, or blood cells) in combinant with non-competent ventral ectoderm, while combinant with competent ectoderm was found to have well-differentiated axial-mesoderm with deutero-spinocaudal neurals. The axial-mesoderms have origin in the ectoderm. Uninvaginated DMZ of middle gastrula also showed difference in mesodermal differentiation between competent and non-competent ectoderms; axial-mesoderm differentiation was much better in competent than in non-competent. The axial-mesoderm originated from the uninvaginated DMZ. Archenteron roof of late gastrula showed regional difference in mesodermal differentiation in both combinants with competent and non-competent. The present study further demonstrated that there was regionality in promoting effect of induced neurectoderm on axial-mesoderm differentiation of invaginated archenteron roof.
The present experiments suggest that the cranio-caudal and dorso-ventral axis formations of amphibian mesoderm are finally determined by sequential and reciprocal interactions between the mesodermal anlage and the overlying ectoderm. It should be also shown that lower DMZ acts to trigger a series of the sequential interactions during primary embryonic induction.  相似文献   

2.
Summary Two nuclear markers were used to investigate the origin of cells in secondary embryos ofXenopus induced by dorsal lip transplants, and to determine the ability of the chordomesoderm to direct cells to change their fates.3H-thymidine was used to label cells transplanted between individualX. laevis embryos, and nuclear quinacrine fluorescence was used to distinguishX. borealis tissues transplanted toX. laevis hosts. In the first set of experiments, dorsal lip tissue (also known as the dorsal marginal zone; DMZ) was transplanted to the ventral marginal zone (VMZ) of host embryos. The marginal zone is the toroid of presumptive mesodermal cells which involutes during gastrulation. Examination of the secondary embryos resulting from these grafts revealed that their notochords were derived almost exclusively from transplanted cells whereas their nervous systems and somites were composed almost entirely of host cells. Next, the nuclear markers were used to show the normal fates of the tissue of the ventral equatorial region immediately above the VMZ by orthotopic grafting. This tissue was found to give rise to structures in the ventral posterior portions of the tailbud embryo. Finally, the same ventral tissue was labeled and transplanted to the dorsal equatorial region above the DMZ. As a result, it was induced to change its fate and become neural. These results lend unequivocal support to Spemann's theory of neural induction which has recently been questioned.  相似文献   

3.
Summary Vegetalising factor was isolated from swimbladder of crusian carp (Carassius auratus) by solubilishing with 8 M urea the precipitate obtained after digesting the swimbladder with collagenase. The urea-soluble fraction vegetalised isolated presumptive ectoderm ofTriturus gastrula and produced both undifferentiated mesodermal and endodermal cells. Brief heating of the fraction changed its capacity to produce organised mesodermal tissues, such as notochord and somite, and the frequency of induction of undifferentiated cells was reduced. By inserting the urea-soluble fraction into the blastocoel of an early gastrula, embryos without epidermis were obtained. Some of the embryos consisted of undifferentiated mesodermal and endodermal cells, but in the remaining ones small fragments of notochord, small numbers of somites and pronephros developed, enclosed by endodermal cells.  相似文献   

4.
Suramin, a polyanionic compound, which is thought to inhibit the binding of growth factors to their receptors, prevents the differentiation of the dorsal blastopore lip of early gastrulae into dorsal mesodermal structures as notochord and somites. Suramin treated blastopore lips form ventral mesodermal structures, mainly heart structures. Several cases showed rythmic contractions ("beating hearts"). Of special interest is the fact that blastopore lips isolated from middle gastrulae followed by suramin treatment differentiate in about 50% of the cases brain structures without the presence of notochord. These data suggest that suramin prevents the differentiation of the dorsal blastopore lip into notochord up to the early middle gastrula stage but no longer the formation of head mesoderm, which is the prequisite for the induction of archencephalic brain structures. Treated chordamesoderm with overlaying ectoderm from late gastrulae will differentiate as untreated controls, namely into dorsal axial structures like notochord, somites and brain structures. The results indicate that primarily a more general or ventral mesodermal signal is transferred from the dorsal vegetal blastomeres (Nieuwkoop center) to the dorsal marginal zone. The dorsalization, which enables the blastopore lip to differentiate into head mesoderm and notochord and in turn to acquire neuralizing activity, takes place during the early steps of gastrulation.  相似文献   

5.
Normally developing embryos of Xenopus were fixed at various stages between the blastula and early tail bud stage, and their serial sections were examined. The marginal belt of the blastula was characterized by abundance of cells with RNA-rich peripheral cytoplasm called mesoplasm. At the early gastrula stage, the marginal belt was folded into two layers giving rise to mesodermal material and marginal ectoderm. During gastrulation, the mesodermal material, which consisted of RNA-rich cells, spread to enclose the blastocoel and the endoderm, and a large part of it was shifted to the dorsal side of the embryo. It gradually established the mesodermal layer. The notochord was formed on the dorsal lip of the blastopore by involution, separately from preformed mesodermal material. The RNA-rich cells in the marginal ectoderm became columnar, forming a broad belt in the marginal zone. This belt was deformed and shifted to the dorsal side during gastrulation, eventually establishing the neural plate showing quantitative differentiation along the head-tail axis. Possible mechanisms involved in the formation of the neural plate and mesoderm were discussed with reference to the organizer and the mesoplasm.  相似文献   

6.
Horseradish peroxidase (HRP) was used as an intracellular lineage tracer in two experiments designed to reveal the sites of origin of cells that formed the duplicate embryo which developed in relation to an organizer grafted in the ventral marginal zone (VMZ) of Xenopus laevis embryos. In the first experiment a dorsal blastoporal lip fully labeled with HRP was grafted in the VMZ of an unlabeled embryo at the beginning of gastrulation. This resulted in development of a second embryo in which labeled cells, of graft origin, formed the notochord, and parts of the somites, endoderm, and neural tube. The second experiment was designed to show the sites of origin of the host's cells that formed parts of the induced embryo. HRP was injected into individual blastomeres in a series of Xenopus embryos at the 32-cell stage and each embryo received an unlabeled organizer graft in the VMZ at the beginning of gastrulation. In these embryos the lineages that contributed to the host's primary neural tube did not contribute any cells to the induced neural tube. All the cells in the induced neural tube which originated from the host were descendants of ventral blastomeres that did not contribute to the neural tube normally. This shows that the second neural tube is formed as a result of the action of the organizer on cells in its immediate vicinity which would not normally have entered neural pathways of differentiation.  相似文献   

7.
The isolated upper marginal zone from the initial stage ofCynops gastrulation is not yet determined to form the dorsal axis mesoderm: notochord and muscle. In this experiment, we will indicate where the dorsal mesoderm-inducing activity is localized in the very early gastrula, and what is an important event for specification of the dorsal axis mesoderm during gastrulation. Recombination experiments showed that dorsal mesoderm-inducing activity was localized definitively in the endodermal epithelium (EE) of the lower marginal zone, with a dorso-ventral gradient; and the EE itself differentiated into endodermal tissues, mainly pharyngeal endoderm. Nevertheless, when dorsal EE alone was transplanted into the ventral region, a secondary axis with dorsal mesoderm was barely formed. However, when dorsal EE was transplanted with the bottle cells which by themselves were incapable of mesoderm induction, a second axis with well-developed dorsal mesoderm was observed. When the animal half with the lower marginal zone was rotated 180° and recombined with the vegetal half, most of the rotated embryos formed only one dorsal axis at the primary blastopore side. The present results suggest that there are at least two essential processes in dorsal axis formation: mesoderm induction of the upper marginal zone by endodermal epithelium of the lower marginal zone, and dorsalization of the upper dorsal marginal zone evoked during involution.  相似文献   

8.
Using 32-cell Xenopus embryos series of extirpation experiments were performed in order to clarify whether or not the dorsal equatorial blastomeres were committed to differentiate to the axial mesodermal structures. First, these blastomeres designated as B1, B1', C1 and C1' and C1' were labeled using the technique of HRP injection or vital staining. They produce descendants which become localized in the organizer region of the early gastrula. These cells form the prechordal plate, notochord, somites, pharyngeal endoderm and neural tube at early neurula stage. The results of extirpation of the medial two or four of these blastomeres show that the entire head lacks or the tissues and organs of the head greatly reduce. This indicates that already at the 32-cell stage they have been committed to autonomously differentiate to form the axial mesodermal tissues of the head and that their roles in the head formation can neither be replaced nor complemented by any other blastomeres surrounding them. It is also shown that the vegetal yolk cells do not seem to play essential roles for development of the axial organs of the head. On the basis of the present results a view of establishment of the organizer of Xenopus eggs is proposed.  相似文献   

9.
We have analyzed cell behavior in the organizer region of the Xenopus laevis gastrula by making high resolution time-lapse recordings of cultured explants. The dorsal marginal zone, comprising among other tissues prospective notochord and somitic mesoderm, was cut from early gastrulae and cultured in a way that permits high resolution microscopy of the deep mesodermal cells, whose organized intercalation produces the dramatic movements of convergent extension. At first, the explants extend without much convergence. This initial expansion results from rapid radial intercalation, or exchange of cells between layers. During the second half of gastrulation, the explants begin to converge strongly toward the midline while continuing to extend vigorously. This second phase of extension is driven by mediolateral cell intercalation, the rearrangement of cells within each layer to lengthen and narrow the array. Toward the end of gastrulation, fissures separate the central notochord from the somitic mesoderm on each side, and cells in both tissues elongate mediolaterally as they intercalate. A detailed analysis of the spatial and temporal pattern of these behaviors shows that both radial and mediolateral intercalation begin first in anterior tissue, demonstrating that the anterior-posterior timing gradient so evident in the mesoderm of the neurula is already forming in the gastrula. Finally, time-lapse recordings of intact embryos reveal that radial intercalation takes places primarily before involution, while mediolateral intercalation begins as the mesoderm goes around the lip. We discuss the significance of these findings to our understanding of both the mechanics of gastrulation and the patterning of the dorsal axis.  相似文献   

10.
The formation of the amphibian organizer is evidenced by the ability of cells of the dorsal marginal zone (DMZ) to self-differentiate to form notochord and to induce the formation of other axial structures from neighboring regions of the embryo. We have attempted to determine when these abilities are acquired in the urodele, Ambystoma mexicanum (axolotl), and in the anuran, Xenopus laevis, by removing the mesodermalizing influence of the vegetal hemisphere at different stages of development and culturing the animal hemisphere isolate. This was possible, even at the 32 and 64-cell stage, through the use of embryos with rare cleavage patterns. Cultured isolates were analyzed for morphological differentiation of mesodermal and neural structures, and for biochemical differentiation of the tissue-specific enzyme, acetylcholinesterase (AChE). Large amounts of mesodermal and neural structures, and normal expression of AChE were found in isolates made as early as the 32-cell stage in both species. Only a small increase in the percentage of isolates developing mesoderm was detected when isolations were made at later cleavage or blastula stages. The amount of mesoderm formed did not depend on the stage of isolation. Mesoderm differentiation was usually limited to the notocord and muscle. The isolates rarely formed pronephros, mesothelium, or mesenchyme, derivatives of ventral mesoderm, during normal development. The results indicate that the marginal zone of the cleavage-stage embryo contains all of the information needed for the formation of the organizer. The formation of dorsal mesoderm does not require subsequent interaction with the cells of the vegetal hemisphere, although the presence of those cells is likely to play a role in normal pattern formation.  相似文献   

11.
We analyzed the notochord formation, formation of the prechordal plate, and patterning of anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster. The lower (LDMZ) and upper (UDMZ) domains of the dorsal marginal zone (DMZ) of the early gastrula involuted and formed two distinct domains: the anterior fore-notochordal endodermal roof and the posterior domain containing the prospective notochord. Cygsc is expressed in the LDMZ from the onset of gastrulation, and the Cygsc-expressing LDMZ planarly induces the notochord in the UDMZ at the early to mid gastrula stages. At the mid to late gastrula stages, part of the Cygsc-expressing LDMZ is confined to the prechordal plate. On the other hand, Cybra expression only begins at mid gastrula stage, coincident with notochord induction at this stage. Anteroposterior regional specificity of the neural plate was patterned by the posterior domain of the involuting archenteron roof containing the prospective notochord at the mid to late gastrula stages. Cynops gastrulation thus differs significantly from Xenopus gastrulation in that the regions of the DMZ are specified from the onset of gastrulation, while the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Thus we propose that Cynops gastrulation is divided into two phases: a notochord induction phase in the early to mid gastrula, and a neural induction phase in the mid to late gastrula.  相似文献   

12.
13.
Summary A highly purified vegetalizing factor induces endoderm preferentially in amphibian gastrula ectoderm. After combination of this factor with less pure fractions, a high percentage of trunks and tails with notochord and somites are induced. The induction of these mesodermal tissues depends on secondary factors which may act on plasma membrane receptors of the target cells. The secondary factors are probably proteins as they are inactivated by trypsin or cellulose-bound proteinase K. They are not inactivated by thioglycolic acid.The implication of these findings for tissue determination and differentiation in normal development in relation to the anlageplan for endoderm and mesodermal tissues is discussed.  相似文献   

14.
The hypochord of the axolotl embryo is first visible at an early tailbud stage, forming a rod-like structure, situated immediately under the notochord. A profusion of extracellular matrix fibrils is attached to the dorsolateral regions of the hypochord, linking it with the somites. A basal lamina develops around the hypochord, indicating an epithelial type of cell differentiation. Abundant rough endoplasmic reticula in the hypochord cells suggest lively synthetic activity. Prospective endoderm cells were vitally labeled with the lipophilic dye 1,1-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate (DiD) at the gastrula stage. Cells labeled with the dye were later found in the hypochord as well as in the gut endoderm. This shows that the hypochord is of endodermal origin, contrary to recent suggestions that the hypochord is of mesodermal origin, but consistent with histological data. After about 8 days of existence, the hypochord disappears. Experimental results, using an apoptosis detection kit, indicate that the hypochord cells may disintegrate by a type of apoptotic cell death. The close association between the hypochord and developing dorsal aorta suggests that the hypochord could be involved in the positioning of the dorsal aorta, which forms under it. J Morphol 232:57–66, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
 Dorso-marginal epithelium, a distinct crescent-shaped region in the early gastrula of Bufo arenarum, appears after involution as a narrow dorso-median strip of archenteric endoderm close to the notochord. In explant cultures, this layer showed an extreme dorsalizing activity, promoting the formation of notochordal structures from ventro-mesodermal cells. In the presence of ectoderm, this inductive activity was expanded resulting in a wide range of dorso-lateral components such as notochord, muscle, nephric tubules, mesothelium and mesenchyme. The mesodermal origin of these derivatives was confirmed by the use of FDA (fluorescein-dextran-amine)-labelled explants. Extensive mesodermal development in cultures seems to require cell contacts between the inner aspect of the dorso-marginal epithelium and mesodermal cells. When such contacts were prevented, cultures would only differentiate erythrocytes as a result of a purely ectodermal stimulus. Bisection of the dorso-marginal epithelium in whole embryos resulted in the development of a duplicated set of axial structures, clearly showing the role of the epithelium as a dorsal organizer. Received: 30 July 1996 / Accepted: 20 February 1997  相似文献   

16.
The differentiation and organizer activity of newt ectoderm treated with activin A was studied in explantation and transplantation experiments. In the explantation experiments, ectoderm dissected from late morulae–early gastrulae stage embryos treated with a high concentration of activin A (100 ng/mL) formed only yolk-rich endodermal cells. Mesodermal tissues, such as notochord and muscle, were seldom found in these explants. When they were transplanted into the blastocoele of other early gastrulae, they formed part of the endoderm of the host embryo and induced a secondary axis with only posterior characters (including axial mesoderm and neural tissues). In contrast, whole secondary axes were induced when activin-treated ectoderm was transplanted into the ventral marginal zone (VMZ) of early blastulae. The transplanted pieces invaginated by themselves and differentiated into foregut structures including pharynx, stomach, and liver. These phenomena were also observed in experiments in which presumptive foregut was used instead of activin-treated ectoderm. These findings show that activin-treated ectoderm can act as the complete organizing center in Cynops .  相似文献   

17.
Dorsal lips of Xenopus laevis may differentiate into pancreas after treatment with retinoic acid in vitro. The dorsal lip region is fated to be dorsal mesoderm and anterior endoderm. Dorsal lip cells isolated from stage 10 early gastrula differentiate into tissues such as notochord, muscle and pharynx. However, in the present study, dorsal lips treated with 10(-4) M retinoic acid for 3 h differentiated into pancreas-like structures accompanied by notochord and thick endodermal epithelium. Sections of the explants showed that some cells gathered and formed an acinus-like structure as observed under microscopes. In addition to the morphological changes, expressions of the pancreas-specific molecular markers, XIHbox8 and insulin, were induced in retinoic acid-treated dorsal lip explants. Therefore, it is suggested that retinoic acid may induce the dorsal lip cells to differentiate into a functional pancreas. However, continuous treatment with retinoic acid did not induce pancreas differentiation at any concentration. Dorsal lips treated with retinoic acid within 5 h after isolation differentiated into pancreas-like cells, while those treated after 15 h or more did not. The present study provided a suitable test system for analyzing pancreas differentiation in early vertebrate development.  相似文献   

18.
Suramin, a polyanionic compound, which has previously shown to dissociate platelet derived growth factor (PDGF) from its receptor, prevents the differentiation of neural (brain) structures of recombinants of dorsal blastopore lip (Spemann's organizer) and competent neuroectoderm. Furthermore, the suramin treatment changes the prospective differentiation pattern of isolated blastopore lip. While untreated dorsal blastopore lip will differentiate into dorsal mesodermal structures (notochord and somites), suramin treated dorsal blastopore lip will form ventral mesoderm structures, especially heart structures. The results are discussed in the context of the current opinion about the mode of action of different growth factor superfamilies.  相似文献   

19.
Urodeles begin gastrulation with much of their presumptive mesoderm in the superficial cell layer, all of which must move into the deep layers during development. We studied the morphogenesis of superficial mesoderm in the urodeles Ambystoma maculatum, Ambystoma mexicanum, and Taricha granulosa. In all three species, somitic, lateral, and ventral mesoderm move into the deep layer during gastrulation, ingressing through a "bilateral primitive streak" just inside the blastopore. The mesodermal epithelium appears to slide under the endodermal epithelium by a mechanism we term "subduction." Subduction removes the large expanse of superficial presumptive somitic and lateral-ventral mesoderm that initially separates the sub-blastoporal endoderm from the notochord, leaving the endoderm bounding the still epithelial notochord along the gastrocoel roof. Subduction may be a common feature of urodele gastrulation, differing in this regard from anurans. Subducting cells constrict their apices and become bottle-shaped as they approach the junction of the mesodermal and endodermal epithelia. Subducting bottle cells endocytose apical membrane and withdraw the tight junctional component cingulin from the contracting circumferential tight junctions. Either in conjunction with or immediately after subducting, the mesodermal cells undergo an epithelial-to-mesenchymal transition. The mechanism by which epithelial cells release their apical junctions to become mesenchymal, without disrupting the integrity of the epithelium, remains mysterious, but this system should prove useful in understanding this process in a developmental context.  相似文献   

20.
The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号