首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light emission in dinoflagellates is induced by water motions. But although it is known that mechanical stimulations of these organisms trigger the bioluminescent response, the exact mechanism that involves some cell membrane excitations by fluid motions is not yet fully understood and is still controversial. We show in this experimental study that the accelerated shear flow, created by abrupt rotations of one or both co-axial cylinders of a Couette shearing chamber excites the light emission from cultured dinoflagellates Pyrocystis lunula. Following our first results published earlier that state that pure laminar shear does not excite the main bioluminescent response in dinoflagellates, our present experiments show that both shear and acceleration in the flow are needed to trigger the bioluminescent response. Besides, the probability to stimulate this bioluminescent response under acceleration and shear is deduced from the response curves. This response follows a Gaussian distribution that traduces a heterogeneity in individual cell thresholds for the stimulation of bioluminescence in a dinoflagellate population. All these results will have a repercussion in the possible applications of dinoflagellate bioluminescence in flow visualizations and measurements. Moreover, this study opens a new way in studying mechanically-induced stimulus thresholds at the cell level.  相似文献   

2.
Fluid flow stimulates bioluminescence in dinoflagellates. However, many aspects of the cellular mechanotransduction are incompletely known. The objective of our study was to formally test the hypothesis that flow-stimulated dinoflagellate bioluminescence is dependent on shear stress, signifying that organisms are responding to the applied fluid force. The dinoflagellate Lingulodinium polyedrum was exposed to steady shear using simple Couette flow in which fluid viscosity was manipulated to alter shear stress. At a constant shear rate, a higher shear stress due to increased viscosity increased both bioluminescence intensity and decay rate, supporting our hypothesis that bioluminescence is shear-stress dependent. Although the flow response of non-marine attached cells is known to be mediated through shear stress, our results indicate that suspended cells such as dinoflagellates also sense and respond to shear stress. Shear-stress dependence of flow-stimulated bioluminescence in dinoflagellates is consistent with mechanical stimulation due to direct predator handling in the context of predator-prey interactions.  相似文献   

3.
4.
Luminescent dinoflagellates respond to flow by the production of light. The primary mechanotransduction event is unknown, although downstream events include a calcium flux in the cytoplasm, a self-propagating action potential across the vacuole membrane, and a proton flux into the cytoplasm that activates the luminescent chemistry. Given the role of GTP-binding (G) proteins in the mechanotransduction of flow by nonmarine cells and the presence of G-proteins in dinoflagellates, it was hypothesized that flow-stimulated dinoflagellate bioluminescence involves mechanotransduction by G-proteins. In the present study, osmotic swelling of cells of the dinoflagellate Lingulodinium polyedrum was used as a drug delivery system to introduce GDPbetaS, an inhibitor of G-protein activation. Osmotically swollen cells produced higher levels of flow-stimulated bioluminescence at a lower threshold of shear stress, indicating they were more flow sensitive. GDPbetaS inhibited flow-stimulated bioluminescence in osmotically swollen cells and in cells that were restored to the isosmotic condition following hypoosmotic treatment with GDPbetaS. These results provide evidence that G-proteins are involved in the mechanotransduction of flow in dinoflagellates and suggest that G-protein involvement in mechanotransduction may be a fundamental evolutionary adaptation.  相似文献   

5.
Latz  M.I.  & Rohr  J. 《Journal of phycology》2000,36(S3):41-42
Bioluminescence studies provide insight into the properties of water motion that are stimulatory to flow-sensitive organisms such as dinoflagellates, the most common sources of near-surface oceanic bioluminescence. Previous laboratory studies employing steady flows have characterized the luminescent response of dinoflagellates in terms of shear stress. In the present study, computational and experimental approaches were used to investigate the contributions of shear and acceleration to cells responding in a laminar converging flow field, where regions of high acceleration and shear are spatially separated. Flow-stimulated flashes by the dinoflagellates Lingulodinium polyedrum and Ceratocorys horrida were used as a near-instantaneous monitor of cell response. By combining video analysis of flash trajectories with computational methods, the location of each stimulated cell was determined and flow parameters at that location were calculated. Based on several criteria, shear stress was considered the flow parameter most stimulatory to cells. For both dinoflagellates species and for all flow rates, essentially all cells responded downstream near the wall where shear stress levels were maximal, and levels of acceleration and extensional stress were as much as two orders of magnitude less than locations away from the wall. Minimum shear stress levels at the cell positions were consistent with response thresholds based on previous studies. Bioluminescence is an excellent tool for examining how organisms respond to flow at the small temporal and spatial scales relevant to planktonic organisms.  相似文献   

6.
Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various flow conditions was determined for the red‐tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge. Cell division and mortality were determined by direct observation of isolated cells in 0.5‐mL cultures that were shaken to generate unquantified fluid shear. Larger volume cultures were exposed to quantified laminar shear in Couette‐flow chambers (0.004–0.019 N·m ? 2 shear stress) and to unquantified flow in shaken flasks. In these larger cultures, cell division frequency was calculated from flow cytometric measurements of DNA·cell?1. The mechanism by which shear inhibits net growth of L. polyedrum depends on shear stress level and growth conditions. Observations on the isolated cells showed that shaking inhibited growth by lowering cell division without increased mortality. Similar results were found for early exponential‐phase cultures exposed to the lowest experimental shear stress in Couette‐flow chambers. However, mortality occurred when a late exponential‐phase culture was exposed to the same low shear stress and was inferred to occur in cultures exposed to higher shear stresses. Elevated mortality in those treatments was confirmed using behavioral, morphological, and physiological assays. The results predict that cell division in L. polyedrum populations will be inhibited by levels of oceanic turbulence common for near‐surface waters. Shear‐induced mortality is not expected unless shear‐stress levels are unusually high or when cellular condition resembles late exponential/stationary phase cultures.  相似文献   

7.
Panulirus guttatus is a sedentary spiny lobster that dwells in the coral reef habitat. We conducted an exploratory study to describe the within-shelter behaviour of groups of 4-6 individuals of P. guttatus in simulated communal dens deployed in tanks. Lobsters displayed a diel within-shelter activity rhythm, with a peak shortly before dawn due to an increase in agonistic interactions among sheltered individuals. In a single-chamber cave, aggressions resulted in the constant rearrangement of individuals in the den, related to their preference to cling to the walls. In a triple-chamber cave, the largest male often defended one chamber, but the remaining individuals tended to aggregate in one of the other two chambers during the day. These trends suggest that P. guttatus is a gregarious lobster, but that this gregariousness is influenced by the amount of available shelters and by temporary, size-related social hierarchies. This hypothesis should be tested with fully replicated experiments to help understand the patterns of shelter utilization of P. guttatus in the coral reef habitat.  相似文献   

8.
Hatching stage crab larvae will ingest algae, including non-toxic and toxic dinoflagellates. We determined that later zoeal stages, obtained from both laboratory-raised larvae and natural assemblages, also ingest dinoflagellates and we measured the effects of prey density, prior feeding history and time of exposure to prey on incidence of ingestion. Both stage 1 and later stage larvae exposed to algal prey were examined using epifluorescence for the presence of chl a. Both stage 1 and stage 3 laboratory-raised Cancer oregonensis (Dana) and Hemigrapsus nudus (Dana) ingested both the non-toxic dinoflagellate Prorocentrum micans Ehrenberg and the toxic Alexandrium andersoni Balech, with no difference between the stages. Both species showed higher ingestion of P. micans than A. andersoni. Ingestion of both prey types occurred at prey densities as low as 200 cell ml− 1 in C. oregonensis and 50 cells ml− 1 in H. nudus. Samples collected in summer, 2004, provided both stage 1 and late stage Lophopanopeus bellus (Stimpson); stage 1, intermediate, and late stage Fabia subquadrata Dana; and an unidentified porcellanid. Stage 1 L. bellus ingested both prey, while late stage zoeae did not, although the latter apparently were not actively feeding. F. subquadrata fed on both prey, with no difference between early and late larvae. Both stages ingested P. micans more readily than A. andersoni. First evidence of ingestion of P. micans at 600 cells ml− 1 occurred after only 0.5 h, while it took 2 h for ingestion at 50 cells ml− 1. The model of larval feeding involving both omnivory and prey discrimination described previously for the hatching stage is sustained throughout zoeal development and is, perhaps, an adaptation to an uncertain prey environment, one that trades opportunism for inefficiency.  相似文献   

9.
中国黄颡鱼的线粒体DNA多样性及其分子系统学   总被引:4,自引:0,他引:4  
基于体侧色斑、背鳍前部形态、吻长及尾柄长的差异, Ng和Kottelat(2007)将分布于中国的黄颡鱼群体划为两个物种: 北方群体为Pseudobagrus sinensis, 南方群体为P. fulvidraco。本研究通过对70个黄颡鱼标本相关形态特征的测量及对线粒体cyt b基因序列的分析, 探讨了P. sinensis物种的有效性问题。结果表明: 依据体侧色斑和背鳍前部形态的差异, 可将黄颡鱼分为对应于P. sinensisP. fulvidraco的两种形态类型, 但对尾柄长、吻长的测量发现二者没有差异。对70条cyt b基因序列的分析结果为: 两种鱼类有1个共同的单倍型; 两种鱼类的单系性在系统发育分析中都没有得到重现, 而二者聚在一起形成获得100%支持率的单系群; 两种鱼类群体之间存在持续的基因交流(Nm = 4.7); 两种鱼类在单倍型的巢式支系分析(nested clade analysis, NCA)中没有形成各自独立的进化谱系, 所有的单倍型以不超过5步的突变全部被纳入同一个进化网络中。因此我们认为P. sinensis不是有效物种, 而应被视为黄颡鱼的一种形态类型。基于cyt b基因的序列变异, 本研究对黄颡鱼群体的遗传多样性和种群结构作了初步分析。群体的核苷酸不配对分布及Tajima’sD中性检验表明, 约在10.1-14.1万年前, 黄颡鱼在其分布范围内经历过群体扩张, 推测这可能是导致黄颡鱼群体单倍型多样度高(h = 0.857 ± 0.0014)而核苷酸多样度低( π = 0.0023 ± 0.0003)的主要原因。此外, 分析结果显示黄颡鱼群体缺乏明显的地理结构, 推测原因可能是历史上水系的连通促进了不同地理群体之间的基因交流。  相似文献   

10.
Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s−1, the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s−1, indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties.  相似文献   

11.
The response of pea aphids, Acyrthosiphon pisum, to aphid alarm pheromone was not modified by infection with Beauveria bassiana. Approximately 50% of uninfected and infected aphids responded to synthetic alarm pheromone. The simulated attack of aphids infected with B. bassiana did not elicit a response in uninfected aphids. Preliminary air entrainment experiments of both uninfected aphids and aphids at different stages of B. bassiana (generalist pathogen) or P. neoaphidis (obligate pathogen of aphids) demonstrated that B. bassiana infected aphids produced less alarm pheromone than uninfected aphids and, conversely, P. neoaphidis infected aphids produced more alarm pheromone than uninfected aphids. These results are discussed with particular emphasis on the different life history strategies of these two pathogens. We hypothesise that the obligate, specialist pathogen, P. neoaphidis, is under greater selection pressure to increase pathogen transmission and survival resulting in modified host behaviour, than the generalist pathogen, B. bassiana.  相似文献   

12.
王艳  邓坤  王小冬 《生态科学》2013,32(2):165-170
在不同光照和营养盐结构条件下半连续培养球形棕囊藻和3种硅藻,研究光照、营养盐限制和硅藻竞争对球形棕囊藻囊体形成的影响。结果表明:高光照显著促进了藻类的生长,球形棕囊藻在低光环境下几乎不形成囊体。球形棕囊藻和3种硅藻对光限制和P限制更加敏感,而在N限制环境中均具有相对较高的生物量。粒径较小的球形棕囊藻游离单细胞和中肋骨条藻在营养盐和光限制条件下比粒径较大的细胞具有更强的竞争能力。硝酸盐是球形棕囊藻囊体形成的营养基础,但是营养盐结构并未改变棕囊藻囊体形态。具有两种生活史状态有利于球形棕囊藻度过资源限制的环境,从而有利于球形棕囊藻在硅藻藻华之后再次形成藻华。  相似文献   

13.
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor–Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.  相似文献   

14.
我国抗虫转基因杨树生态安全性研究进展   总被引:2,自引:0,他引:2  
转基因树木与农作物相比, 人们更关注其长时间种植可能导致转基因扩散到周围野生近缘种。由于生长周期长, 转基因树木会增加转基因不稳定性, 对非靶标生物的影响, 靶标害虫对转基因植物产生抗性, 增加树木入侵性(杂草化), 以及由于基因漂移或基因逃逸对环境产生的负面影响或新的环境风险。过去十几年, 针对我国抗食叶害虫的两个商业化转Bt基因欧洲黑杨(Populus nigra)和转双抗虫基因741杨[P. alba× (P. davidiana + P. simonii) × P. tomentosa], 已开展了有关生态安全性方面的多项研究。本文围绕抗虫转基因树木生态安全性研究进展进行了综述。抗虫转基因杨树对节肢动物种群和群落结构产生了一定影响, 使昆虫的多样性提高, 但对土壤微生物区系未见明显影响。转基因欧洲黑杨通过花粉和种子发生的基因漂移几率很低。转基因杨树通过内生菌发生的水平转移可能会对环境造成的潜在危险也进行了评价。文章最后指出对抗虫转基因杨树农林复合生态系统开展生物安全研究的必要性。  相似文献   

15.
A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31–40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30–39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-γ production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.  相似文献   

16.
17.
Pulsatile flow in abdominal aortic aneurysm (AAA) models has been examined in order to understand the hemodynamics that may contribute to growth of an AAA. The model studies were conducted by experiments (flow visualization and laser Doppler velocimetry) and by numerical simulation using physiologically realistic resting and exercise flow conditions. We characterize the flow for two AAA model shapes and sizes emulating early AAA development through moderate AAA growth (mean and peak Reynolds numbers of 362<Remean<1053 and 3308<Repeak<5696 with Womersley parameter 16.4<<21.2). The results of our investigation indicate that AAA flow can be divided into three flow regimes: (i) Attached flow over the entire cycle in small AAAs at resting conditions, (ii) vortex formation and translation in moderate size AAAs at resting conditions, and (iii) vortex formation, translation and turbulence in moderate size AAAs under exercise conditions. The second two regimes are classified in the medical literature as disturbed flow conditions that have been correlated with atherogenesis as well as thrombogenesis. Thus, AAA disturbed hemodynamics may be a contributing factor to AAA growth by accelerating the degeneration of the arterial wall. Our investigation also concluded that vortex development is considerably weaker in an asymmetric AAA. Furthermore, turbulence was not observed in the asymmetric model. Finally, our investigation suggests a new mode of transition to turbulence: vortex ring instability and bursting to turbulence. The transition process depends on a combination of the pulsatile flow conditions and the tube cross-sectional area change.  相似文献   

18.
Several experiments were conducted to understand better the physiological mechanisms underlying growth inhibition of the dinoflagellate Gonyaulax polyedra Stein due to small-scale turbulence shear. To measure photosynthetic 14C uptake, a “phytoplankton wheel” device for rotating cultures in closed bottles was used. Turbulence was quantified biologically in the bottles by comparing growth inhibition with that in cultures with constant shear between a fixed cylinder and an outer concentric rotating cylinder (a stable Couette flow). At saturating irradiances, particulate photosynthesis (Psat) or photosynthesis per unit chlorophyll (PBsat) were not inhibited completely at the highest turbulence level (26.6 rad.s?1), and photosynthesis was less sensitive than growth. Photosynthesis per cell (PCsat) was increased by turbulence. In three experiments on the effects of turbulence on photosynthesis versus irradiance curves, the slope of the curve, α, for particulate photosynthesis at limiting irradiances did not change. Photosynthesis per unit chlorophyll per unit irradiance (αB) decreased at high (but not intermediate) turbulence levels. Photosynthesis per cell per unit irradiance, αC, increased with turbulence, suggesting an increase in photosynthetic efficiency in turbulent cultures. In two of the three experiments, respiration rates increased with turbulence, and in one experiment excretion of photosynthetically fixed 14C was not affected by motion. Ratios of accessory pigments to chlorophyll a did not change with turbulence, but pigments per cell and per dry weight increased with turbulence. These findings suggest little or no disruption of the photosynthetic apparatus. When turbulence was applied for 1 week, β-carotene increased while peridinin and diadinoxanthin decreased, suggesting inhibition of synthesis of these latter pigments by prolonged turbulence. Since cell numbers did not increase or decreased during turbulent 72–h incubations, cell division was inhibited and also the cells were very much enlarged. Increases in αC per cell suggest that, in the sea, photo synthetic metabolism can persist efficiently without cell division during turbulent episodes. After turbulence ceases or reaches low levels again, cells can then divide and blooms may form. Thus, blooms can come or go fairly rapidly in the ocean depending on the degree of wave- and wind-induced turbulence.  相似文献   

19.
2012年4—10月,应用TDP热扩散探针技术,对生长季晋西黄土区次生林主要组成树种辽东栎和山杨树干液流速率进行测定,结合同步测定的空气相对湿度(RH)、太阳光合有效辐射(PAR)、大气温度(T)和土壤含水量(θ)等环境因子,分析液流速率对环境因子的响应.结果表明: 5、6月,影响辽东栎和山杨树干液流速率的主要气象因子是空气饱和水汽压差(VPD)和PAR;7、8月,影响辽东栎和山杨树干液流速率的主要气象因子是VPD和T.除气象因子外,土壤水分条件也是驱动液流变化的重要因素,降雨后θ的增加能够有效影响液流速率,5、6、7、8月,辽东栎降雨后的平均液流速率比降雨前分别增大了28.3%、48.6%、16.9%、11.5%,山杨在6、7、8月降雨后的平均液流速率比降雨前分别增大了0.6%、4.5%、2.3%,辽东栎的增幅明显大于山杨.辽东栎液流速率对降雨后土壤含水量变化更敏感,表现出更高的耗水能力和需水要求,而降雨后山杨的耗水策略仍较保守.液流速率和VPD的关系可以采用指数饱和曲线函数拟合,降雨前后拟合参数的变化说明土壤水分条件的改善能够促进液流速率更快速地到达饱和值.  相似文献   

20.
Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator''s strike. Using a novel device, the impulse chamber, zebrafish (Danio rerio) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13–15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号