首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand receptor 3 (TRAIL-R3) is a decoy receptor for TRAIL, a member of the tumor necrosis factor family. In several cell types decoy receptors inhibit TRAIL-induced apoptosis by binding TRAIL and thus preventing its binding to proapoptotic TRAIL receptors. We studied the regulation of TRAIL-R3 gene expression in breast tumor cells treated with the genotoxic drug doxorubicin (DXR). The breast tumor cell line MCF-7 (p53 wild type) responded to DXR with a marked elevation of TRAIL-R3 expression at the mRNA, total protein, and cell surface levels. In contrast, in EVSA-T cells (p53 mutant) DXR did not induce increased expression of TRAIL-R3. In MCF-7 cells overexpressing the human papillomavirus protein E6, which causes p53 degradation, DXR-induced TRAIL-R3 expression was notably reduced. Furthermore, in MCF-7 cells overexpressing a temperature-sensitive p53 mutant (Val135), shifting the cultures to the permissive temperature was sufficient to induce the expression of TRAIL-R3. We also cloned and characterized a p53 consensus element located within the first intron of the human TRAIL-R3 gene. This element binds p53 and confers responsiveness to genotoxic damage to constructs of the TRAIL-R3 promoter in transient transfection experiments. Our results indicate that genotoxic treatments such as DXR, frequently used in cancer therapy, may also induce genes such as TRAIL-R3 that potentially have antiapoptotic actions and thus interfere with the TRAIL signaling system. This is particularly important in view of the proposed use of TRAIL in antitumor therapy.  相似文献   

2.
3.
It is generally accepted that exposure of cells to a variety of DNA-damaging agents leads to up-regulation and activation of wild-type (wt) p53 protein. We investigated the (re)-activation of p53 protein in two human cancer cell lines in which the gene for this tumor suppressor is not mutated: HeLaS(3) cervix carcinoma and MCF-7 breast cancer cells, by induction via different genotoxic and cytotoxic stimuli. Treatment of human cells with the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or different anti-cancer drugs resulted in a strong DNA damage as evidenced by Comet assay and a marked increase in site-specific phosphorylation of H2AX. Unlike in MCF-7 cells, in HeLaS(3) cells the expression of p53 protein did not increase after MNNG treatment despite a strong DNA damage. However, other agents for example doxorubicin markedly induced p53 response in HeLaS(3) cells. After exposure of these cells to MNNG, the ATM-dependent effector proteins Chk2 and NBS1 were phosphorylated, thereby evidencing that MNNG-induced DNA breakage was recognized and properly signaled. In HeLaS(3) cells wt p53 protein is not functional due to E6-mediated targeting for accelerated ubiquitylation and degradation. Therefore, the activation of a p53 response to genotoxic stress in HeLaS(3) cells seems to depend on the status of E6 oncoprotein. Indeed, the induction of p53 protein in HeLaS(3) cells in response to distinct agents inversely correlates with the cellular level of E6 oncoprotein. This implicates that the capability of different agents to activate p53 in HeLaS(3) cells primarily depends on their inhibitory effect on expression of E6 oncoprotein.  相似文献   

4.
The death receptor CD95 (APO-1/Fas) mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I) or presence (Type II) of mitochondrial involvement. Micro(mi)RNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.  相似文献   

5.
 Malignant glioma cells are susceptible to CD95(Fas/APO-1)-mediated apoptosis triggered by agonistic antibody. Here we examined the proapoptotic effects of the natural CD95 ligand, a cytotoxic cytokine homologous to tumor necrosis factor, on malignant glioma cell lines LN-229, LN-308 and T98G. We assessed whether glioma cell killing is synergistically enhanced by cotreatment with CD95 ligand and chemotherapeutic agents, including doxorubicin, carmustine, vincristine, etoposide, teniposide, 5-fluorouracil and cytarabine. Synergy was examined at low concentrations of cytotoxic drugs and CD95 ligand with a defined effect level (IC15). Short-term-cytotoxicity assays showed prominent killing of the glioma cells by CD95 ligand but not by the drugs at relevant concentrations. CD95 ligand-induced apoptosis in the acute toxicity paradigm was augmented by doxorubicin and vincristine. Growth-inhibition assays revealed prominent synergy between CD95 ligand and all drugs examined. The best synergy was obtained with CD95 ligand and doxorubicin, vincristine or teniposide. The strong synergistic antiproliferative effects were observed at much lower concentrations of CD95 ligand and cytotoxic drugs than the moderate synergistic acute cytotoxic effects. All cell lines examined express the Bcl-2 protein. LN-229 has partial wild-type p53 activity. T98G has mutant p53. LN-308 has a deleted p53 gene and lacks p53 protein expression. Thus, synergistic effects of CD95 ligand and cytotoxic drugs were observed in cell lines exhibiting two features thought to play a role in the chemoresistance of human malignant glioma cells: loss of wild-type p53 activity and acquisition of bcl-2 expression. Ectopic expression of murine bcl-2 conferred partial protection from CD95 ligand and drugs when administered alone but did not interfere with the mechanisms underlying the synergistic effects of CD95 ligand and chemotherapeutic drugs. Received: 31 October 1996 / Accepted: 4 January 1997  相似文献   

6.
Human MCF-7 breast cancer cells are relatively resistant to conventional chemotherapy due to the lack of caspase-3 activity. We reported recently that roscovitine (ROSC), a potent cyclin-dependent kinase 2 inhibitor, arrests human MCF-7 breast cancer cells in the G(2) phase of the cell cycle and concomitantly induces apoptosis. Exposure of MCF-7 cells to ROSC also strongly activates the wt p53 tumor suppressor protein in a time- and dose-dependent manner. The p53 level increased despite upregulation of Hdm-2 protein and was attributable to the site-specific phosphorylation at Ser-46. The p53 protein phosphorylated at serine 46 causes the up-regulation of the p53AIP1 protein, a component of mitochondria. In the present study we identified the pathway mediating ROSC-induced p53 activation. Exposure of MCF-7 cells to ROSC activated homeodomain-intereacting protein kinase-2 (HIPK2). The overexpression of wild-type but not kinase inactive HIPK2 increased the basal and ROSC-induced level of p53 phosphorylation at Ser-46 and strongly enhanced the rate of apoptosis in cells exposed to ROSC. We show that HIPK2 is activated by ROSC and mediates ROSC-induced P-Ser-46-p53, thereby stabilizing wt p53 and increasing the efficacy of drug-induced apoptosis in MCF-7 cells. These results identify HIPK2 as a component of the ROSC-induced signaling pathway leading to the stabilization and activation of wt p53 protein.  相似文献   

7.
8.
Many anticancer drugs are able to induce apoptosis in tumor cells but the mechanisms underlying this phenomenon are poorly understood. Some authors reported that the p53 tumor suppressor gene may be responsible for drug-induced apoptosis; however, chemotherapy-induced apoptosis can also be observed in p53 negative cells. Recently, doxorubicin (DXR) was reported to induce CD95L expression to mediate apoptosis through the CD95/CD95L system. Thus, an impairment of such a system may be involved in drug resistance. We evaluated the in vitro antitumor activity of several cytotoxic drugs on two human p53-negative T-cell lymphoma cell lines, the HUT78-B1 CD95L-resistant cell line and the HUT78 parental CD95L-sensitive cell line. We demostrated by Western blotting assay that DXR and etoposide (VP-16) were able to induce CD95L expression after 4 h of treatment. In contrast, they were unable to induce the expression of p53. DXR, at concentrations ranging from 0.001 - 1 microg/ml, and VP16, at concentrations ranging from 0.05 - 1 microg/ml, were equally cytotoxic and induced apoptosis in both cell lines as assessed by fluorescence microscopy and flow cytometry analyses. Although we observed a slightly reduced percentage of apoptotic cells in HUT78B1 when compared with the parental HUT78 cells after few hours of drug exposure, this difference was no longer evident at 48 or 72 h. Similarly, the exposure of HUT78 cells to a CD95-blocking antibody partially reduced early apoptosis (24 h) without affecting the long-term effects of the drugs including cytotoxicity. Furthermore, as observed with DXR and VP-16, both the CD95L-sensitive and the CD95L-resistant cell lines resulted equally sensitive to the cytotoxic effects of a number of different cytotoxic drugs (vincristine, camptothecin, 5-fluorouracil and methotrexate). The treatment with the Caspase-3 tetrapeptide aldehyde inhibitor, Ac-DEVD-CHO, did not affect the DXR-induced apoptosis whereas it only modestly inhibited apoptosis and cytotoxicity of VP-16, while Z-VAD.FMK, a Caspase inhibitor that prevents the processing of Caspase-3 to its active form, was able to block DXR-induced apoptosis at 24 h but not at 48 h. Thus, our results do not confirm a crucial role for the CD95/CD95L system in drug-induced apoptosis and suggest the involvement of alternative p53-independent pathways at least in this experimental model system.  相似文献   

9.
Tumors display a high rate of glucose uptake and glycolysis. We investigated how inhibition of glucose metabolism could affect death receptor-mediated apoptosis in human tumor cells of diverse origin. We show that both substitution of glucose for pyruvate and treatment with 2-deoxyglucose enhanced apoptosis induced by tumor necrosis factor (TNF)-alpha, CD95 agonistic antibody, and TNF-related apoptosis-inducing ligand (TRAIL). Inhibition of glucose metabolism enhanced killing of myeloid leukemia U937, cervical carcinoma HeLa, and breast carcinoma MCF-7 cells upon death receptor ligation. Caspase activation, mitochondrial depolarization, and cytochrome c release were increased under these conditions. Glucose deprivation-mediated sensitization to apoptosis was prevented in MCF-7 cells overexpressing BCL-2. Interestingly, the human B-lymphoblastoid cell line SKW6.4, a prototype for mitochondria-independent death receptor-induced apoptosis, was also sensitized to anti-CD95 and TRAIL-induced apoptosis under glucose-free conditions. Changes in c-FLIP(L) and cFLIPs levels were observed in some but not all the cell lines studied following glucose deprivation. Glucose deprivation enhanced death receptor-triggered formation of death-inducing signaling complex and early processing of procaspase-8. Altogether, these results suggest that the glycolytic pathway may be an important target for therapeutic intervention to sensitize tumor cells to selectively toxic soluble death ligands or death ligand-expressing cells of the immune system by facilitating the activation of initiator caspase-8.  相似文献   

10.
Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer.  相似文献   

11.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

12.
Regulation of the homeostasis of vascular endothelium is critical for the processes of vascular remodeling and angiogenesis under physiological and pathological conditions. Here we show that doxorubicin (Dox), a drug used in antitumor therapy, triggered a marked accumulation of p53 and induced CD95 gene expression and apoptosis in proliferating human umbilical vein endothelial cells (HUVECs). Transfection and site-directed mutagenesis experiments using the CD95 promoter fused to an intronic enhancer indicated the requirement for a p53 site for Dox-induced promoter activation. Furthermore, the p53 inhibitor pifithrin-alpha (PFT-alpha) blocked both promoter inducibility and protein up-regulation of CD95 in response to Dox. Up-regulated CD95 in Dox-treated cells was functional in eliciting apoptosis upon incubation of the cells with an agonistic CD95 antibody. However, Dox-mediated apoptosis was independent of CD95/CD95L interaction. The analysis of apoptosis in the presence of PFT-alpha and benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone revealed that both p53 and caspase activation are required for Dox-mediated apoptosis of HUVECs. Finally, Dox triggered Bcl-2 down-regulation, cytochrome c release from mitochondria, and the activation of caspases 9 and 3, suggesting the involvement of a mitochondrially operated pathway of apoptosis. These results highlight the role of p53 in the response of primary endothelial cells to genotoxic drugs and may reveal a novel mechanism underlying the antitumoral properties of Dox, related to its ability to induce apoptosis in proliferating endothelial cells.  相似文献   

13.
Direct experimental evidence implicates telomere erosion as a primary cause of cellular senescence. Using a well characterized model system for breast cancer, we define here the molecular and cellular consequences of adriamycin treatment in breast tumor cells. Cells acutely exposed to adriamycin exhibited an increase in p53 activity, a decline in telomerase activity, and a dramatic increase in beta-galactosidase, a marker of senescence. Inactivation of wild-type p53 resulted in a transition of the cellular response to adriamycin treatment from replicative senescence to delayed apoptosis, demonstrating that p53 plays an integral role in the fate of breast tumor cells treated with DNA-damaging agents. Stable introduction of hTERT, the catalytic protein component of telomerase, into MCF-7 cells caused an increase in telomerase activity and telomere length. Treatment of MCF-7-hTERT cells with adriamycin produced an identical senescence response as controls without signs of telomere shortening, indicating that the senescence after treatment is telomere length-independent. However, we found that exposure to adriamycin resulted in an overrepresentation of cytogenetic changes involving telomeres, showing an altered telomere state induced by adriamycin is probably a causal factor leading to the senescence phenotype. To our knowledge, these data are the first to demonstrate that the mechanism of adriamycin-induced senescence is dependent on both functional p53 and telomere dysfunction rather than overall shortening.  相似文献   

14.
15.
16.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   

17.
p53 regulates the expression of the tumor suppressor gene maspin   总被引:20,自引:0,他引:20  
Maspin has been shown to inhibit tumor cell invasion and metastasis in breast tumor cells. Maspin expression was detected in normal breast and prostate epithelial cells, whereas tumor cells exhibited reduced or no expression. However, the regulatory mechanism of maspin expression remains unknown. We report here a rapid and robust induction of maspin expression in prostate cancer cells (LNCaP, DU145, and PC3) and breast tumor cells (MCF7) following wild type p53 expression from an adenovirus p53 expression vector (AdWTp53). p53 activates the maspin promoter by binding directly to the p53 consensus-binding site present in the maspin promoter. DNA-damaging agents and cytotoxic drugs induced endogenous maspin expression in cells containing the wild type p53. Maspin expression was refractory to the DNA-damaging agents in cells containing mutant p53. These results, combined with recent studies of the tumor metastasis suppressor gene KAI1 and plasminogen activator inhibitor 1 (PAI1), define a new category of molecular targets of p53 that have the potential to negatively regulate tumor invasion and/or metastasis.  相似文献   

18.
Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53.  相似文献   

19.
Induction of CD95 ligand (CD95-L) may contribute to drug-induced apoptosis in chemosensitive leukemias and solid tumors. Here we report that induction of CD95-L and apoptosis by doxorubicin in leukemic and neuroblastoma cells is regulated by the redox state and reactive oxygen species (ROS). Preincubation of chemosensitive cells with antioxidants such as N-acetyl-cysteine (NAC) or glutathione (GSH), significantly reduced doxorubicin-induced apoptosis, hyperexpression of ROS, loss of mitochondrial membrane potential (DeltaPsim) and upregulation of CD95-L expression. Doxorubicin-resistant cells exhibited higher levels of GSH in comparison to chemosensitive cells and were deficient in hyperproduction of ROS, loss of DeltaPsim and upregulation of CD95-L in response to cytotoxic drugs. Downregulation of intracellular GSH concentrations reversed deficient drug-induced hyperproduction of ROS and CD95-L upregulation. In addition, overexpression of Bcl-XL in CEM cells blocked doxorubicin-triggered ROS and CD95-L expression. These findings suggest that induction of CD95-L by cytotoxic drugs is modulated by the cellular redox state and mitochondria derived ROS.  相似文献   

20.
Summary Chemotherapy has been used for treatment of breast cancer but with limited success. We characterized the effects of bcl-2 antisense and cisplatin combination therapy in two human isogenic breast carcinoma cells p53(+)MCF-7 and p53(−)MCF-7/E6. The transferrin-facilitated lipofection strategy we have developed yielded same transfection efficiency in both cells. Bcl-2 antisense delivered with this strategy significantly induced more cell death, apoptosis, and cytochrome c release in MCF-7/E6 than in MCF-7, but did not affect Fas level in both cells and activated caspase-8 equally. Cisplatin exerted same effects on cell viability and apoptosis in both cells, but released smaller amounts of cytochrome c while activated more caspase-8 in MCF-7/E6. The combination treatment yielded greater effects on cell viability, apoptosis, cytochrome c release, and caspase-8 activation than individual treatments in both cells although p53(−) cells were more sensitive. The potentiated activation of caspase-8 in the combination treatment suggested that caspase-8-mediated (but cytochrome c-independent) apoptotic pathway is the major contributor of the enhanced cell killing. Thus, bcl-2 antisense delivered with transferrin-facilitated lipofection can achieve the efficacy of killing breast cancer cells and sensitizing them to chemotherapy. Bcl-2 antisense and cisplatin combination treatment is a potentially useful therapeutic strategy for breast cancer irrespective of p53 status. Hesham Basma and Hesham El-Refaey contributed equally  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号