首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rapid and efficient delivery of radioactive metal complexes to the cell interior would enable novel applications in medical imaging and radiotherapy. Membrane permeant peptide conjugates incorporating HIV-1 Tat transactivation protein sequences (GRKKRRQRRR) and an appropriate peptide-based motif (epsilon-KGC) that provides an N(3)S donor core for chelating technetium and rhenium were synthesized. Oxotechnetium(V) and oxorhenium(V) Tat-peptide complexes were prepared by facile transchelation reactions with permetalates, tin(II) chloride and sodium glucoheptonate. RP-HPLC showed two major [(99m)Tc]Tat-peptide species (4) that differed in retention time by approximately 2 min corresponding to two [Re]Tat-peptide species (7) shown to have identical mass, consistent with formation of two isomers, likely the oxo-metal diastereomers. [(99m)Tc]Tat-peptides were stable to transchelation in vitro. In human Jurkat cells, [(99m)Tc]Tat-peptide 4 showed concentrative cell accumulation (30-fold greater than extracellular concentration) and rapid uptake kinetics (t(1/2) < 2 min) in a diastereomeric-comparable manner. Paradoxically, uptake was enhanced in 4 degrees C buffer compared to 37 degrees C, while depolarization of membrane potential as well as inhibition of microtubule function and vesicular trafficking showed no inhibitory effect. Cells preloaded with 4 showed rapid washout kinetics into peptide-free solution. Modification of [(99m)Tc]Tat-peptide by deletion of the N-terminus Gly with or without biotinylation minimally impacted net cell uptake. In addition, the C-terminus thiol of the prototypic Tat-peptide was labeled with fluorescein-5-maleimide to yield conjugate 8. Fluorescence microscopy directly localized conjugate 8 to the cytosol and nuclei (possibly nucleolus) of human Jurkat, KB 3-1 and KB 8-5 tumor cells. Preliminary imaging studies in mice following intravenous administration of prototypic [(99m)Tc]Tat-peptide 4 showed an initial whole body distribution and rapid clearance by both renal and hepatobiliary excretion. Analysis of murine blood in vivo and human serum ex vivo revealed >95% intact complex, while murine urine in vivo showed 65% parent complex. Thus, these novel Tat-peptide chelate conjugates, capable of forming stable [Tc/Re(V)]complexes, rapidly translocate across cell membranes into intracellular compartments and can be readily derivatized for further targeted applications in molecular imaging and radiotherapy.  相似文献   

2.
Membrane permeation peptides, such as Tat basic domain, have emerged as useful membrane transduction agents with potential utility in therapeutic delivery and diagnostic imaging. While generally thought to universally permeate all cells by a nonselective process, the mechanism of membrane transduction remains poorly characterized. To examine vectorial transport properties of Tat basic domain in well-differentiated epithelial cells possessing tight junctions, L and D stereoisomers of Tat(48-57) peptide conjugates labeled with (99m)Tc were quantitatively analyzed in confluent monolayers of MDCK renal epithelial and CaCo-2 colonic carcinoma cells grown in transwell configurations. In both cell lines, vectorial transepithelial apparent permeability coefficients (P(app)) for L- and D-[(99m)Tc]Tat-peptides ranged from 30 to 70 nm/s, comparable to values for the macromolecular impermeant marker inulin in both apical-to-basolateral and basolateral-to-apical directions, but 100-fold less than the P(app) values for propranolol, a highly permeable control compound. Upon direct instillation of [(99m)Tc]Tat-peptide into the urinary bladder of living rats in vivo, no transepithelial permeation into other tissues was identified. Furthermore, MDCK and CaCo-2 cells showed a complete lack of intracellular accumulation of fluorescein conjugated Tat-peptide. However, translocation into cells was induced by treatment with plasma membrane permeabilizing agents such as digitonin and acetone/methanol, while cholesterol depletion with beta-methyl-cyclodextrin and metabolic inhibition with CCCP or 4 degrees C showed no effect. By contrast, in Hela and KB 3-1 cells, epithelial lines that do not form tight junctions in monolayer culture, baseline cytoplasmic and nucleolar accumulation was readily observed. Because all four cell lines expressed heparan sulfate proteoglycans, putative receptors for Tat basic peptides, we found no correlation between heparan sulfate and the permeation barrier observed in MDCK and CaCo-2 cells. The unanticipated presence of a permeation barrier to Tat-peptides in well-differentiated epithelial cells suggests the existence of cell-specific mechanisms for mediated translocation of these permeation peptides.  相似文献   

3.
This report describes biodistribution characteristics of three ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; L = TPPTS (trisodium triphenylphosphine-3,3',3' '-trisulfonate), ISONIC (isonicotinic acid) and PDA (2,5-pyridinedicarboxylic acid)) in athymic nude mice bearing MDA-MB-435 human breast cancer xenografts. Ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (L = TPPTS, ISONIC and PDA) were prepared and were analyzed by a reversed HPLC method. Surprisingly, coligands have little impact on log P values of their ternary ligand (99m)Tc complexes even though HPLC retention times suggest that [(99m)Tc(SQ168)(tricine)(PDA)] and [(99m)Tc(SQ168)(tricine)(ISONIC)] are more hydrophilic than [(99m)Tc(SQ168)(tricine)(TPPTS)]. The results from biodistribution studies indicated that excretion kinetics of the (99m)Tc-labeled cyclic RGDfK dimer can be modified by the choice of coligand. The fact that all three radiotracers show high tumor uptake during the 2 h study period suggests that the coligand has minimal effect on the tumor targeting capability of the (99m)Tc-labeled cyclic RGDfK dimer. Results from the blocking experiment suggest that the tumor localization of the (99m)Tc-labeled cyclic RGDfK dimer is integrin alpha(v)beta(3)-mediated. On the basis of their liver uptake and tumor/liver ratios, we believe that PDA has the advantage over TPPTS and ISONIC for the (99m)Tc-labeling of HYNIC-biomolecule conjugates.  相似文献   

4.
Jia B  Shi J  Yang Z  Xu B  Liu Z  Zhao H  Liu S  Wang F 《Bioconjugate chemistry》2006,17(4):1069-1076
This report describes the evaluation of biodistribution properties of three radiotracers, [(99m)Tc(SQ168)(EDDA)], [(99m)Tc(SQ168)(tricine)(PDA)], and [(99m)Tc(SQ168)(tricine)(TPPTS)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; EDDA = ethylenediamine-N,N'-diacetic acid; PDA = 2,5-pyridinedicarboxylic acid; TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate), and their potential to image the glioma integrin alpha(v)beta(3) expression in BALB/c nude mice bearing the U87MG human glioma xenografts. It was found that all three radiotracers were able to localize in glioma tumors with a relatively high tumor uptake and long tumor retention time by binding to the integrin alpha(v)beta(3) expressed on both tumor cells and endothelial cells of tumor neovasculature. It seems that the coligand has minimal effect on integrin alpha(v)beta(3) targeting capability of the (99m)Tc-labeled RGDfK dimer, but it has a significant impact on their biodistribution properties. For example, the complex [(99m)Tc(SQ168)(tricine)(TPPTS)] has the lowest liver uptake and the highest metabolic stability in normal BALB/c nude mice. Results from SPECT imaging studies show that the glioma tumors can be clearly visualized with all three radiotracers at 4 h postinjection. Among the three radiotracers evaluated in this study, [(99m)Tc(SQ168)(tricine)(TPPTS)] has the best imaging quality and is a promising candidate for more preclinical evaluations in the future.  相似文献   

5.
Functionalization of biologically relevant molecules for the labeling with the novel fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) precursor has gained considerable attention recently. Therefore, we tested seven different tridentate (histidine L(1)(), iminodiacetic acid L(2)(), N-2-picolylamineacetic acid L(3)(), N, N-2-picolylaminediacetic acid L(4)()) and bidentate (histamine L(5)(), 2-picolinic acid L(6)(), 2,4-dipicolinic acid L(7)()) ligand systems, with the potential to be bifunctionalized and attached to a biomolecule. The ligands allowed mild radiolabeling conditions with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) (30 min, 75 degrees C). The ligand concentrations necessary to obtain yields of >95% of the corresponding organometallic complexes 1-7 ranged from 10(-)(6) to 10(-)(4) M. Complexes of the general formula "fac-[(99m)TcL(CO)(3)]" (L = tridentate ligand) and "fac-[(99m)Tc(OH(2))L'(CO)(3)]" (L' = bidentate ligand), respectively, were produced. Challenge studies with cysteine and histidine revealed significant displacement of the ligands in complexes 5-7 but only little exchange with complexes 1-4 after 24 h at 37 degrees C in PBS buffer. However, no decomposition to (99m)TcO(4)(-) was observed under these conditions. All complexes showed a hydrophilic character (log P(o/w) values ranging from -2.12 to 0.32). Time-dependent FPLC analyses of compounds 1-7 incubated in human plasma at 37 degrees C showed again no decomposition to (99m)TcO(4)(-) after 24 h at 37 degrees C. However, the complexes with bidentate ligands (5-7) became almost completely protein bound after 60 min, whereas the complexes with tridentate coordinated ligands (1-4) showed no reaction with serum proteins. The compounds were tested for their in vivo stability and the biodistribution characteristics in BALB/c mice. The complexes with tridentate coordinated ligand systems (1-4) revealed generally a good and fast clearance from all organs and tissues. On the other hand, the complexes with only bidentate coordinated ligands (5-7) showed a significantly higher retention of activity in the liver, the kidneys, and the blood pool. Detailed radiometric analyses of murine plasma samples, 30 min p.i. of complex fac-[(99m)TcL(1)(CO)(3)], 1, revealed almost no reaction of the radioactive complex with the plasma proteins. By contrast, in plasma samples of mice, which were injected with complex fac-[(99m)Tc(OH(2))L(5)(CO)(3)](+), 5, the entire radioactivity coeluded with the proteins. On the basis of these in vitro and in vivo experiments, it appears that functionalization of biomolecules with tridentate-chelating ligand systems is preferable for the labeling with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+), since this will presumably result in radioactive bioconjugates with better pharmacokinetic profiles.  相似文献   

6.
Zhou Y  Kim YS  Lu X  Liu S 《Bioconjugate chemistry》2012,23(3):586-595
The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (~111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ~ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.  相似文献   

7.
Study of fluorophore and technetium labeling of poly(amido)-amine (PAMAM) generation 4 (G4) dendrimer and its evaluation as potential molecular imaging agent in both normal and melanoma-bearing mice, are described. Dendrimers were first conjugated with FITC (fluorescein isothiocyanate). Dendrimer-FITC was then incubated with the intermediate [(99m)Tc(CO)(3)(H(2)O)(3)](+) and purified by gel filtration. Biodistribution and scintigraphy images were performed administrating (99m)Tc(CO)(3)-dendrimer-FITC to normal mice (NM) or melanoma-bearing mice (MBM). Cryostat tissue sections from MBM mice were analyzed by confocal microscopy. Radiolabeling yield of dendrimer was approx. 90%. The (99m)Tc(CO)(3)-dendrimer-FITC complex was stable for at least 24h. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with high tumor uptake that allowed tumor imaging. Confocal microscopy analysis showed cytoplasmic distribution of (99m)Tc(CO)(3)-dendrimer-FITC.  相似文献   

8.
Glucose 9 and 2-deoxyglucose 10 were successfully synthesized and radiolabeled with [(99m)Tc(CO)(3)(H(2)0)(3)](+) intermediate in high yield. The complexes were characterized by HPLC and its stability with histidine over time was challenged. Cell uptake and biodistribution studies in melanoma-bearing C57BL/6 mice were performed. Both compounds showed accumulation in tumor tissue with high tumor-to-muscle ratios. Thus, D-glucose- and D-2-deoxyglucose-(99m)Tc complex could be considered as agents for melanoma diagnosis.  相似文献   

9.
A new biomolecule labeling method that utilizes the [(99m)Tc(N)(PNP)](2+) metal fragment is presented. Thus, a series of nitrido mixed-ligand M(V) complexes (M = (99m)Tc, (99g)Tc, Re), [M(N)(Ln)(PNP)], where Ln is the dianionic form of a dithiolate or substituted-dithiolate ligand and PNP is an aminodiphosphine, is described. (99m)Tc complexes can be prepared using either a two-step or a three-step procedure starting from generator-eluted pertechnetate through a prereduced mixture of [(99m)Tc(N)]-containing species, followed by sequential or contemporary addition of the relevant dithiolate and aminodiphosphine. The reactions of 2,3-dimercaptopropionic acid (H(2)L1) with [Tc(N)(PNP)](2+) were investigated in detail. It was found that this bidentate ligand coordinated the metal fragment through the [S(-),S(-)] donor atom pair, to yield neutral mixed-ligand complexes [(99m)Tc(N)(L1)(PNP)] in high specific activity. The additional carboxylic functional group was not involved in metal coordination, thus remaining available for conjugation to target-specific molecules. Dithiolates incorporating pendant functional group(s) gave rise to a 1:1 diastereoisomeric mixture of syn-[M(N)(Ln)(PNP)] and anti-[M(N)(Ln)(PNP)] derivatives, depending on the relative orientation of the dithiolate substituent(s) with respect to the terminal nitrido group, and no isomeric conversion was detected. (99m)Tc species had been proven to be identical with the (99g)Tc complexes prepared at the macroscopic level by comparison of the corresponding radiometric and UV/vis HPLC profiles. Challenge experiments with cysteine or glutathione indicated that these physiological agents had no effect on the stability of this class of mixed-ligand (99m)Tc-complexes. Biodistribution studies in rats of selected (99m)Tc-complexes showed a rapid clearance from the blood and tissues after 60 min pi.  相似文献   

10.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

11.
Radio-LC-MS for the characterization of 99mTc-labeled bioconjugates   总被引:1,自引:0,他引:1  
This report describes the first example of using radio-LC-MS for determining the composition of (99m)Tc radiopharmaceuticals at the tracer level. The in-line radiometric detector is a useful addition to a standard LC-MS and provides direct correlation between the MS data and the radioactive species in a radiopharmaceutical kit. Complexes [(99m)Tc(HYNICtide)(tricine)(L)] (RP444, L = TPPTS; RP445, L = TPPDS; and RP446, L = TPPMS) were prepared using a decayed generator eluant. All the ternary ligand (99m)Tc complexes show the expected monoprotonated molecular ions, (M + 1)(+), and diprotonated molecular ions, (M + 2)(2+). The LC-MS spectral data support the proposed structure and are consistent with those obtained for their corresponding (99)Tc analogues. Ternary ligand complexes [(99m)Tc(HYNICtide)(tricine)(L)] (L = ISONIC-HE and ISONIC-Sorb) are neutral, and the molecular weights are also lower than that of RP444. Using a fresh generator eluant (24 h prior elution), only 1-2 mCi of (99m)Tc [(7 x 10(-)(12))-(1.5 x 10(-)(11)) mol of technetium complex] are required to obtain a reasonably clean mass spectrum. Radio-LC-MS is a quick and accurate analytical tool for characterization of (99m)Tc radiopharmaceuticals at the tracer level.  相似文献   

12.
Two prototype phosphine-containing HYNIC chelators, HYNIC-Kp-DPPB and HYNIC-Ko-DPPB (HYNIC = 6-hydrazinonicotinamide; K = lysine; and DPPB = diphenylphosphine-benzoic acid), have been synthesized and characterized by NMR ((1)H, (13)C, and (31)P) and LC-MS. Macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], were prepared by reacting the phosphine-containing HYNIC chelator with (99m)TcO(4)(-) in the presence of excess tricine and stannous chloride. Results from this study clearly demonstrated that both HYNIC-Kp-DPPB and HYNIC-Ko-DPPB are able to form highly stable macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], when tricine is used as the coligand. Radio-HPLC data suggest that the complex [(99m)Tc(HYNIC-Kp-DPPB)(tricine)] exists as only one detectable isomer in solution while the complex [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] has three isomers. It was also found that three isomers of [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] interconvert at elevated temperatures, suggesting that the presence of these isomers might be due conformational changes in the macrocyclic Tc chelate. The LC-MS data for both macrocyclic (99m)Tc complexes are completely consistent with the proposed composition. The phosphine-containing HYNIC chelators described in this study may have the potential as bifunctional chelators for (99m)Tc labeling of small biomolecules.  相似文献   

13.
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.  相似文献   

14.
In our efforts to develop a novel class of SPECT imaging agents based on nonsteroidal androgen receptor (AR) antagonists, we have synthesized N-cyclopentadienyltricarbonyltechnetium-N-[4-nitro-3-trifluoromethyl-phenyl] carboxamide (NF(99m)Tc), an analog of the AR antagonist ligand flutamide. NF(99m)Tc was obtained in 82% yield from the reaction of N-[4-nitro-3-trifluoromethyl-phenyl]-ferrocenecarboxamide (NFFe) with fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+) in DMF-water at pH 1 and at 150 °C for 1 h. The corresponding Re analog was also prepared. In vitro assays demonstrated high stability of NF(99m)Tc under physiological conditions, buffer and blood. The tissue biodistribution in mature male Wistar rats showed a significant selective uptake by prostate but this uptake was not blocked by an excess of testosterone acetate. A higher uptake by lung tissues was observed.  相似文献   

15.
This report describes the (99m)Tc labeling of a HYNIC-conjugated vitronectin receptor antagonist (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo[Lys-Arg-Gly-Asp-D-Phe])-cyclo[Lys-Arg-Gly-Asp-D-Phe]). The ternary ligand complex [(99m)Tc(SQ168)(tricine)(TPPTS)] (RP593) was prepared using a non-SnCl(2)-containing formulation. The corresponding (99)Tc analogue, [(99)Tc]RP593, was also prepared and characterized by HPLC and LC-MS. A HPLC concordance experiment using RP593 and [(99)Tc]RP593 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data is completely consistent with the 1:1:1:1 composition for Tc:SQ168:tricine:TPPTS and provides direct evidence that the two radiometric peaks in the radio-HPLC chromatogram of RP593 are indeed due to the resolution of diastereomers. In an in vitro receptor binding assay, [(99)Tc]RP593 was shown to have comparable binding affinity for the vitronectin receptor to that of SQ168 itself.  相似文献   

16.
The aim of this study was to radiolabel ciprofloxacin (Cip) and nitrofuryl thiosemicarbazone (NFT) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and to evaluate the ability of the radiopharmaceuticals as tracers in detecting sites of infection. Cip and NFT were radiolabeled with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) core and characterized by RHPLC. The stabilities of the preparations were evaluated in saline and rat serum. In vitro binding studies of the radiopharmaceuticals with S. aureus were performed. Biodistribution studies were conducted at different time points after injecting (i.v.) the radiopharmaceuticals in rats (intramuscularly infected with S. aureus) as well as in rats with sterile inflammation. To assess the infection targeting capacity of (99m)Tc-tricarbonyl ciprofloxacin and nitrofuryl thiosemicarbazone, (99m)Tc(v)O-Cip and (99m)Tc(v)O-NFT were used as control. Scintigraphic imaging studies of tricarbonyl compounds and (99m)Tc(v)O-Cip were performed at 4 h after injection. The radiochemical purities of (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT were between 97-98% as determined by thin layer chromatography (TLRC) and RHPLC; no further purification is necessary before injection. The radiopharmaceuticals exhibited substantial stability when incubated in isotonic saline and serum up to 24 h. Biodistribution studies showed maximum uptake in the infected rat thigh muscle at 4 h post injection and washing out at slower rate from the infected site than the oxo technetium chelate. The mean ratios of uptake in infected/non-infected thighs were 3.87:1, 3.41:1 and 3.17:1 for (99m)Tc(CO)(3)-Cip, (99m)Tc(CO)(3)-NFT and (99m)Tc(v)O-Cip respectively. During scintigraphic studies, infection sites appeared quite distinctly with (99m)Tc(CO)(3)-Cip and (99m)Tc(CO)(3)-NFT, comparable to the behaviour with (99m)Tc(v)O-Cip. These results encouraged us for further development of infection imaging radiopharmaceuticals based on the (99m)Tc-tricarbonyl core.  相似文献   

17.
A HYNIC-conjugated chemotactic peptide (fMLFK-HYNIC) was labeled with (99m)Tc using tricine and TPPTS as coligands. The combination of fMLFK-HYNIC, tricine, and TPPTS with (99m)Tc produced a ternary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(TPPTS)] (RP463). RP463 was synthesized either in two steps, in which the binary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(2)] (RP469) was formed first and then reacted with TPPTS, or in one step by direct reduction of [(99m)Tc]pertechnetate with stannous chloride in the presence of fMLFK-HYNIC, tricine, and TPPTS. The radiolabeling yield for RP463 was usually >/=90% using 10 microg of fMLFK-HYNIC and 100 mCi of [(99m)Tc]pertechnetate. Unlike RP469, which decomposed rapidly in the absence of excess tricine coligand, RP463 was stable in solution for at least 6 h. [(99)Tc]RP463 was prepared and characterized by HPLC and electrospray mass spectrometry. In an in vitro assay, [(99)Tc]RP463 showed an IC(50) of 2 nM against binding of [(3)H]fMLF to receptors on PMNs. [(99)Tc]RP463 also induces effectively the superoxide release of polymorphonuclear leukocytes (PMNs) with an EC(50) value of 0.2 +/- 0.2 nM. The localization of RP463 in the infection foci was assessed in a rabbit infection model. RP463 was cleared from the blood faster than RP469 and was excreted mainly through the renal system. As a result of rapid blood clearance and increased uptake, the target-to-background ratios continuously increased from 1.5 +/- 0.2 at 15 min postinjection to 7.5 +/- 0.4 at 4 h postinjection. Visualization of the infected area could be as early as 2 h. A transient decrease in white blood cell count of 35% was observed during the first 30 min after injection of the HPLC-purified RP463 in the infected rabbit. This suggests that future research in this area should focus on developing highly potent antagonists for chemotactic peptide receptor or other receptors on PMNs and monocytes.  相似文献   

18.
A trifunctional bioconjugate consisting of the SV40 nuclear localization signal (NLS) peptide, an aliphatic triamine ligand, and the DNA intercalating pyrene has been synthesized and quantitatively labeled with [(99m)Tc(OH(2))(3)(CO)(3)](+). The radiotoxicity of the resulting nucleus-targeting radiopharmaceutical on B16F1 mouse melanoma cells has been investigated to evaluate the activity of Auger and Coster-Kronig electrons on the viability of cells. We found a dose-dependent significant radiotoxicity of the nucleus-targeting radiopharmaceutical clearly related to the low energy decay of (99m)Tc. These principal results imply a possible therapeutic strategy based on the use of the low-energy Auger electron-emitting (99m)Tc radionuclide attached to nucleus-targeting molecules and comprising an intercalator. Highly efficient DNA targeting vectors could complement the usual role of (99m)Tc in diagnostic applications. The Auger electrons emitted by the (99m)Tc nuclide induce DNA damage leading ultimately, through a mitotic catastrophe pathway, to necrotic cell death. Non-DNA-targeting (99m)Tc complexes display much lower radiotoxicity.  相似文献   

19.
This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core (M = Re, Tc) in the context of preparing novel Tc(I) and Re(I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL(1-5), were coordinated to the [M(CO)(3)](+) core on the macroscopic scale (M = Re) and on the tracer scale (M = (99m)Tc, (186)Re). On the macroscopic scale the complexes, ReL(1-5)(CO)(3)(H(2)O), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor gave the tracer species (99m)TcL(1-5)(CO)(3)(H(2)O) in high radiochemical yields. Similar high radiochemical yields when labeling with (186)Re were facilitated by in situ preparation of the [(186)Re(CO)(3)(H(2)O)(3)](+) species in the presence of HL(1-5) to give (186)ReL(1-5)(CO)(3)(H(2)O). Stability challenges, incubating (99m)TcL(1-5)(CO)(3)(H(2)O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.  相似文献   

20.
The design, synthesis, and biological evaluation of nitrido technetium-99m complexes for imaging benzodiazepine receptors are described. The design was performed by selecting the precursor biologically active substrate desmethyldiazepam, and the reactive metal-containing fragment [(99m)Tc(N)(PXP)](2+) (PXP = diphosphine ligand) as molecular building-blocks for assembling the structure of the final radiopharmaceuticals through the application of the so-called 'bifunctional' and 'integrated' approaches. This required the synthesis of the ligands H(2)BZ1, H(2)C1, and H(2)C2 (Figures 1 and 2) derived from desmethyldiazepam. In turn, these ligands were reacted with [(99m)Tc(N)(PXP)](2+) to afford the complexes [(99m)Tc(N)(PXP)(L)] (L = BZ1, C1, C2). The chemical nature of the resulting Tc-99m radiopharmaceuticals was investigated using chromatographic methods, and by comparison with the analogous complexes prepared with the long-lived isotope Tc-99g and characterized by spectroscopic and analytical methods. Results showed that the complexes [(99m)Tc(N)(PXP)(L)] are neutral and possess an asymmetrical five-coordinated structure in which two different bidentate ligands, PXP and L, are coordinated to the same Tc[triple bond]N core. With the ligand H(2)BZ1, two isomers were obtained depending on the syn or anti orientation of the pendant benzodiazepine group relative to the Tc[triple bond]N multiple bond. Biodistribution studies of Tc-99m complexes were carried out in rats, and affinity for benzodiazepine receptors was assessed through in vitro binding experiments on isolated rat's cerebral membranes using the corresponding Tc-99g complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号