首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim East Africa is one of the most biologically diverse regions, especially in terms of endemism and species richness. Hypotheses put forward to explain this high diversity invoke a role for forest refugia through: (1) accumulation of new species due to radiation within refugial habitats, or (2) retention of older palaeoendemic species in stable refugia. We tested these alternative hypotheses using data for a diverse genus of East African forest chameleons, Kinyongia. Location East Africa. Methods We constructed a dated phylogeny for Kinyongia using one nuclear and two mitochondrial markers. We identified areas of high phylogenetic diversity (PD) and evolutionary diversity (ED), and mapped ancestral areas to ascertain whether lineage diversification could best be explained by vicariance or dispersal. Results Vicariance best explains the present biogeographic patterns, with divergence between three major Kinyongia clades (Albertine Rift, southern Eastern Arc, northern Eastern Arc) in the early Miocene/Oligocene (> 20 Ma). Lineage diversification within these clades pre‐dates the Pliocene (> 6 Ma). These dates are much older than the Plio‐Pleistocene climatic shifts associated with cladogenesis in other East African taxa (e.g. birds), and instead point to a scenario whereby palaeoendemics are retained in refugia, rather than more recent radiations within refugia. Estimates of PD show that diversity was highest in the Uluguru, Nguru and East Usambara Mountains and several lineages (from Mount Kenya, South Pare and the Uluguru Mountains) stand out as being evolutionarily distinct as a result of isolation in forest refugia. PD was lower than expected by chance, suggesting that the phylogenetic signal is influenced by an unusually low number of extant lineages with long branch lengths, which is probably due to the retention of palaeoendemic lineages. Main conclusions The biogeographic patterns associated with Kinyongia are the result of long evolutionary histories in isolation. The phylogeny is dominated by ancient lineages whose origins date back to the early Miocene/Oligocene as a result of continental wide forest fragmentation and contraction due to long term climatic changes in Africa. The maintenance of palaeoendemic lineages in refugia has contributed substantially to the remarkably high biodiversity of East Africa.  相似文献   

2.
Recent genetic results support the recognition of two African elephant species: Loxodonta africana, the savannah elephant, and Loxodonta cyclotis, the forest elephant. The study, however, did not include the populations of West Africa, where the taxonomic affinities of elephants have been much debated. We examined mitochondrial cytochrome b control region sequences and four microsatellite loci to investigate the genetic differences between the forest and savannah elephants of West and Central Africa. We then combined our data with published control region sequences from across Africa to examine patterns at the continental level. Our analysis reveals several deeply divergent lineages that do not correspond with the currently recognized taxonomy: (i) the forest elephants of Central Africa; the forest and savannah elephants of West Africa; and (iii) the savannah elephants of eastern, southern and Central Africa. We propose that the complex phylogeographic patterns we detect in African elephants result from repeated continental-scale climatic changes over their five-to-six million year evolutionary history. Until there is consensus on the taxonomy, we suggest that the genetic and ecological distinctness of these lineages should be an important factor in conservation management planning.  相似文献   

3.
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.  相似文献   

4.
New ecological niches that may arise due to climate change can trigger diversification, but their colonisation often requires adaptations in a suite of life‐history traits. We test this hypothesis in species‐rich Mycalesina butterflies that have undergone parallel radiations in Africa, Asia, and Madagascar. First, our ancestral state reconstruction of habitat preference, using c. 85% of extant species, revealed that early forest‐linked lineages began to invade seasonal savannahs during the late Miocene‐Pliocene. Second, rearing replicate pairs of forest and savannah species from the African and Malagasy radiation in a common garden experiment, and utilising published data from the Asian radiation, demonstrated that savannah species consistently develop faster, have smaller bodies, higher fecundity with an earlier investment in reproduction, and reduced longevity, compared to forest species across all three radiations. We argue that time‐constraints for reproduction favoured the evolution of a faster pace‐of‐life in savannah species that facilitated their persistence in seasonal habitats.  相似文献   

5.
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.  相似文献   

6.
The African forest robins (akalats) of the genus Sheppardia are represented by eight forest-dwelling species with restricted distributions in tropical Africa. All but three are strictly montane, inhabiting isolated highland areas in eastern and western Africa. Due to their subtle plumage variation and almost wholly allopatric distribution, determining systematic relationships based upon morphology has proven difficult. However, akalats, due to their distribution, offer an ideal opportunity to test models of speciation within tropical forests. We therefore investigated the phylogeny of species of this genus from presently sampled regions of their distribution using mtDNA sequence analysis. We found that the monophyly of described species, even from disjunct populations, is well supported. However, relationships among species is generally poorly resolved, with support given only to the paired relationships S. montana/S. lowei, S. bocagei/S. gunningi, and S. aequatorialis/S. cyornithopsis. This dataset lent support to S. montana and S. lowei representing a superspecies. All species appear to have evolved rapidly from a common ancestor around the Miocene/Pliocene transition, a time of the last uplift of East Africa's montane region. Surprisingly, intraspecific radiations suggest a far more recent population expansion in the upper Pleistocene, concordant with major climatic variation and vegetational changes. We discuss the implications of our results in the light of previous discussions of the montane speciation model.  相似文献   

7.
Global climate fluctuated considerably throughout the Pliocene-Pleistocene period, influencing the evolutionary history of a wide array of species. Using the phylogeographic patterns within the hartebeest (Alcelaphus buselaphus (Pallas, 1766)) complex, we evaluated the evolutionary consequences of such environmental change for a typical large mammal ranging on the African savannah. Our results, as generated from two mitochondrial DNA markers (the D-loop and cytochrome b), suggest an origin of the hartebeest in eastern Africa from where the species has colonized other parts of the continent. Phylogenetic analyses revealed an early diversification into southern and northern hartebeest lineages, an event that may be related to the formation of the Rift Valley lakes. The northern lineage has further diverged into eastern and western lineages, most probably as a result of the expanding central African rainforest belt and subsequent contraction of savannah habitats during a period of global warming. The diversification events appear to have coincided with major climatic changes and are highly correlated in time. These observations strongly suggest that large-scale climatic fluctuations have been a major determinant for the species' evolutionary history and that hartebeest evolution has mainly taken place in isolated yet environmentally favourable refugia during periods of global warming. Indications of sudden population expansion for two putative ancestral hartebeest populations provide further support for a refugia-based explanation of the diversification events. Reciprocal monophyly between southern and northern lineages may suggest that reproductive barriers exist and that the hartebeest complex comprises two different species.  相似文献   

8.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

9.
Mechanisms of speciation of flightless grasshoppers in mountainous and coastal East Africa are inferred considering (i) phylogenies estimated with a combination of molecular markers (16S rRNA locus, COI and H3), (ii) ecological data and (iii) the geographic distribution of Parepistaurus species. The study suggests that coastal taxa of Parepistaurus belong to ancestral lineages from which evolved the high diversity of species found in the Eastern Arc Mountains of Tanzania and Kenya, which are geologically ancient mountain formations. Network analyses and a molecular clock approach, calibrated with the geological age of the volcanoes, suggested that speciation was boosted by climatic fluctuations affecting large areas of East Africa. With the aridification beginning 2.8 Ma, forest taxa were isolated due to forest fragmentation and populations were separated by extended grasslands, which are avoided by Parepistaurus species. However, a humid period between 2.7 and 2.5 Ma triggered a spread of coastal taxa along the Eastern Arc Mountains. Forests expanded again and riparian vegetation along rivers draining into the Indian Ocean probably served as corridors for the dispersal of coastal taxa to the hinterland. The inland volcanoes such as Mount Kilimanjaro are therefore good time markers because their geological age is known, limiting the available time for speciation processes of mountainous Parepistaurus in the area to a maximum of about 1–2 Ma. A third humid but cold period between 1.1 and 0.9 Ma probably further boosted the spread of several flightless and montane‐adapted Orthoptera taxa.  相似文献   

10.
The African gerbils of the genus Tatera are widespread and abundant throughout sub-Saharan Africa. There is still today a certain controversy concerning the taxonomy of these rodents and very few attempts have been made to assess their systematic relationships. The present paper introduces findings based on the partial sequences of cytochrome b (495 bp) and the 16S rRNA (469 bp) mitochondrial genes of six (T. robusta, T. nigricauda, T. vicina, T. leucogaster, T. valida, and T. kempi) species together with two additional taxa. We also report the karyotypes of T. vicina and T. leucogaster. We propose that T. vicina should be considered as a valid species and show the monophyly of the robusta species group, with the exclusion of T. leucogaster. Our results show there is a different chromosomal evolutionary pattern within the two major lineages, which is recognizable through molecular phylogenetics. One is characterized by karyotype stability and the other by a considerable number of chromosomal rearrangements. The lineage divergence coincides with the formation of the East African Rift. The processes that led to the origin of the East African species seem to be related to the subsequent climatic changes, which caused cyclic contraction and expansion of the savannah biomes. Furthermore, geological activities that characterized East Africa during Plio-Pleistocene may also have contributed to lineage divergence.  相似文献   

11.
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change.  相似文献   

12.
Although the high‐latitude range margins in Europe and North America are intensively studied, attention is gradually turned towards the taxa/populations inhabiting glacial refugia. Here, we evaluate the genealogical history of the cold‐adapted Anatolio‐Balkan genus Anterastes especially to test the possible effects of intrarefugial vertical range shifts during climatic oscillations of the Quaternary. Using concatenated data from sequences of COI+16S and ITS1–5.8S–ITS2, intrageneric relationships and the time of speciation events were estimated. Thirteen different demographic analyses were performed using a data set produced from sequences of 16S. Different phylogenetic analyses recovered similar lineages with high resolution. The molecular chronogram estimated speciation events in a period ranging from 5.60 to 1.22 Myr. Demographic analyses applied to 13 populations and five lineages suggested constant population size. Genetic diversity is significantly reduced in a few populations, while not in others. Fixation indices suggested extremely diverged populations. In the light of these data, the following main conclusions were raised: (i) although glacial refugia are the biodiversity hotspots, species level radiation of the cold‐adapted lineages is mainly prior to the Mid‐Pleistocene transition; (ii) heterogeneous topography provides refugial habitats and allows populations to survive through vertical range shifts during climatic fluctuations; (iii) prolonged isolation of refugial populations do not always result in reduced intrapopulation diversity, but in high level of genetic differentiation; (iv) the cold‐adapted lineages with low dispersal ability might have not colonised the area out of Anatolian refugium during interglacial periods; and (v) populations of invertebrates may have restricted ranges, but this does not mean that they have small effective population size.  相似文献   

13.
The origin of Saharan biodiversity is poorly understood, in part because the geological and paleoclimatic events that presumably shaped species diversity are still controversial, but also because few studies have explored causal explanations for the origin of Saharan diversity using a phylogenetic framework. Here, we use mtDNA (16S and ND4 genes) and nDNA (MC1R and CMOS genes) to infer the relationships and biogeographic history of North African agamas (genus Agama). Agamas are conspicuous, diverse and abundant African lizards that also occur in the Saharan xeric and mesic environments. Our results revealed the presence of three Agama lineages in North Africa: one Afrotropical, one Sahelo-Saharan, and one broadly distributed in North Africa and mainly Saharan. Southern Mauritania contains the highest known diversity, with all three lineages present. Results suggest that agamas colonized the Sahara twice, but only one lineage was able to radiate and diversify there. Species in the Saharan lineage are mostly allopatric, and their splitting, genetic diversity and distribution are greatly explained by mountain ranges. One species in this lineage has colonized the Mediterranean climatic zone (A. impalearis), and another one the Sahel savannah (A. boueti). The other lineage to colonize the Sahara corresponds to A. boulengeri, an eminently Sahelian species that also inhabits Saharan mountain ranges in Mauritania and Mali. Phylogenetic analyses indicate that allopatric montane populations within some currently recognized species are also genetically divergent. Our study therefore concludes that vicariant speciation is a leading motor of species diversification in the area: Inside the Sahara, associated to mountain-ranges isolated by dune seas and bare plains; outside, associated to less harsh climates to the North and South. Paleoclimatic oscillations are suggested as causal explanations of the vicariant distribution and origin of species. Agamas are thought to have colonized northern Africa during wet periods, with subsequent dry periods fragmenting species distribution and leading to allopatric populations associated to milder and wetter climates in the Mediterranean, Sahel, and in Saharan mountains, in an island-model fashion. Finally, our results support the synonymization of A. castroviejoi with A. boueti, the reciprocal monophyly of all other North African agamas, and suggest one candidate species within A. boulengeri.  相似文献   

14.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

15.
《Systematic Entomology》2018,43(2):239-249
This is the first study to address the molecular phylogeny of East African Meconematinae. We used DNA sequence data from the three genes cytochrome oxidase subunit I (COI ), 16S rRNA and histone H3 to reconstruct the relationships within the genus Amytta using Bayesian Inference and maximum likelihood. We included 45 individuals representing 19 Meconematinae taxa from Africa, Europe and Australia, and three outgroup species to explore taxonomic limits at different levels. Members of the genus Amytta belong to three related lineages within Meconematinae. Species of Amytta were found to be monophyletic with Meconema and Phlugidia as sister groups. The molecular results are in accordance with previous morphological and ecological studies. Chromosome numbers and the type of sex determination systems found in Amytta agrees with the three lineages also found in the phylogenetic tree. We conclude that the radiation of Amytta species is geological young. Biogeographical patterns caused by climatic fluctuations of the past seen also in other nonrelated Orthoptera taxa such as the coptacrine genus Parepistaurus are the drivers of biodiversity in the area.  相似文献   

16.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

17.
Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.  相似文献   

18.
It is generally accepted that accentuated global climatic cycles since the Plio-Pleistocene (2.8 Ma ago) have caused the intermittent fragmentation of forest regions into isolated refugia thereby providing a mechanism for speciation of tropical forest biota contained within them. However, it has been assumed that this mechanism had its greatest effect in the species rich lowland regions. Contrary evidence from molecular studies of African and South American forest birds suggests that areas of recent intensive speciation, where mostly new lineages are clustered, occur in discrete tropical montane regions, while lowland regions contain mostly old species. Two predictions arise from this finding. First, a species phylogeny of an avian group, represented in both lowland and montane habitats, should be ordered such that montane forms are represented by the most derived characters. Second, montane speciation events should predominate within the past 2.8 Ma. In order to test this model I have investigated the evolutionary history of the recently radiated African greenbuls (genus Andropadus), using a molecular approach. This analysis finds that montane species are a derived monophyletic group when compared to lowland species of the same genus and recent speciation events (within the Plio-Pleistocene) have exclusively occurred in montane regions. These data support the view that montane regions have acted as centres of speciation during recent climatic instability.  相似文献   

19.

Background

The Anopheles nili group of mosquitoes includes important vectors of human malaria in equatorial forest and humid savannah regions of sub-Saharan Africa. However, it remains largely understudied, and data on its populations’ bionomics and genetic structure are crucially lacking. Here, we used a combination of nuclear (i.e. microsatellite and ribosomal DNA) and mitochondrial DNA markers to explore and compare the level of genetic polymorphism and divergence among populations and species of the group in the savannah and forested areas of Cameroon, Central Africa.

Principal Findings

All the markers provided support for the current classification within the An. nili group. However, they revealed high genetic heterogeneity within An. nili s.s. in deep equatorial forest environment. Nuclear markers showed the species to be composed of five highly divergent genetic lineages that differed by 1.8 to 12.9% of their Internal Transcribed Spacer 2 (ITS2) sequences, implying approximate divergence time of 0.82 to 5.86 million years. However, mitochondrial data only detected three major subdivisions, suggesting different evolutionary histories of the markers.

Conclusions/Significance

This study enlightened additional cryptic genetic diversity within An. nili s.s. in the deep equatorial forest environment of South Cameroon, reflecting a complex demographic history for this major vector of malaria in this environment. These preliminary results should be complemented by further studies which will shed light on the distribution, epidemiological importance and evolutionary history of this species group in the African rainforest, providing opportunities for in-depth comparative studies of local adaptation and speciation in major African malaria vectors.  相似文献   

20.
The dentitions of 48 baboons (Papio cynocephalus) and 242 gorillas (Gorilla gorilla) are compared metrically and the baboons are found to have a greater range of variation, and greater sexual dimorphism than the gorillas. This is explained in terms of the different ecologies of these species: life on the African savannah, with its sharp seasonal changes in available food, seems to have given selective advantage to broader niches than life in the rain forest. Further, the historic continuity of the savannah has provided fewer chances for allopatric speciation than the rain forest. These contrasts between forest and savannah speciation should provide insights into hominid evolution. In trying to judge whether australopithecines, probable savannah residents, can be lumped into one or several species, based upon dental variability, a comparison with baboons should be more informative than the now frequently used contrast with gorillas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号