首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. This reflects tight and specific binding between ERK and the MKP-3 amino terminus with consequent phosphatase activation and dephosphorylation of the bound MAP kinase. We have used a series of p38/ERK chimeric molecules to identify domains within ERK necessary for binding and catalytic activation of MKP-3. These studies demonstrate that ERK kinase subdomains V-XI are necessary and sufficient for binding and catalytic activation of MKP-3. These domains constitute the major COOH-terminal structural lobe of ERK. p38/ERK chimeras possessing these regions display increased sensitivity to inactivation by MKP-3. These data also reveal an overlap between ERK domains interacting with MKP-3 and those known to confer substrate specificity on the ERK MAP kinase. Consistent with this, we show that peptides representing docking sites within the target substrates Elk-1 and p90(rsk) inhibit ERK-dependent activation of MKP-3. In addition, abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH(2) terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.  相似文献   

3.
4.
5.
MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site (55)RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo.  相似文献   

6.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

7.
Mitogen-activated protein (MAP) kinases are critical mediators of innate immune responses. In response to lipopolysaccharide (LPS), MAP kinases are rapidly activated and play an important role in the production of proinflammatory cytokines. Although a number of MAP kinase phosphatases (MKPs) have been identified, their roles in the control of cytokine production have not been well defined. In the present report, we investigated the role of MKP-1 in alveolar macrophages stimulated with LPS. We found that LPS triggered transient activation of three MAP kinase subfamilies, ERK, JNK, and p38, in both immortalized and primary murine alveolar macrophages. MKP-1 was rapidly induced by LPS, and its induction correlated with the dephosphorylation of these MAP kinases. Blocking MKP-1 with triptolide prolonged the activities of both JNK and p38 in immortalized alveolar macrophages. Stimulation of primary alveolar macrophages isolated from MKP-1-deficient mice with LPS resulted in a prolonged p38 phosphorylation compared with wild type alveolar macrophages. Accordingly, these MKP-1-deficient alveolar macrophages also mounted a more robust and rapid tumor necrosis factor alpha production than their wild type counterparts. Adenovirus-mediated MKP-1 overexpression significantly attenuated tumor necrosis factor alpha production in immortalized alveolar macrophages. Finally, MKP-1 was induced by a group of corticosteroids frequently prescribed for the treatment of inflammatory lung diseases, and the anti-inflammatory potencies of these drugs closely correlated with their abilities to induce MKP-1. Our studies indicated that MKP-1 plays an important role in dampening the inflammatory responses of alveolar macrophages. We speculate that MKP-1 may represent a novel target for therapeutic intervention of inflammatory lung diseases.  相似文献   

8.
The mitogen-activated protein (MAP) kinase signaling pathways help to mediate the hypertrophic response of the pressure-loaded adult heart, although their importance in fetal myocardium is less known. The goal of this study was to determine the role the MAP kinase signaling pathways play in regulating the response of the fetal heart to a pressure load. Aortic (Ao) and pulmonary artery (PA) bands were placed in 132-day fetal sheep for 7 days. Protein levels of the total and active (phosphorylated) terminal MAP kinases extracellular signal-regulated kinase (ERK/P-ERK), c-Jun NH(2)-terminal kinase (JNK/P-JNK), and p38/P-p38 and the MAP kinase phosphatases MKP-1, MKP-2, and MKP-3 were made in the right and left ventricular (RV and LV) free walls. In both Ao- and PA-banded animals, total heart weight normalized to body weight was significantly increased, largely due to an increase in RV free wall mass in the Ao-banded animals and an increase in septal mass in the PA-banded fetuses. Total protein levels of the three terminal kinases and of P-ERK and P-JNK remained stable in both groups of banded animals. However, P-p38 was significantly increased in RV and LV of Ao- and PA-banded fetuses. Whereas MKP-1 and MKP-2 protein levels were unchanged following Ao- and PA-banding, MKP-3 protein levels were significantly increased in the RV of the PA-banded animals. These findings indicate that the MAP kinase signaling pathways are active in the fetal heart and help to modulate the response of prenatal myocardium to a pressure load.  相似文献   

9.
10.
MAP Kinase Phosphatase-2 (MKP-2) is a dual specific nuclear phosphatase which is selective for both ERK and JNK, MAP kinases implicated in the regulation of apoptosis in response to genotoxic stress. Here we report the conditional expression of MKP-2 in human embryonic kidney cells 293. We demonstrate that Flag-WT-MKP-2 is able to rescue cells from apoptotic commitment when subjected to UV-C or cisplatin treatment. We establish that upon stimulation all three major MAP kinase families (ERK, JNK and p38 MAP kinases) are activated. However, MKP-2 is surprisingly only able to deactivate JNK in vivo. Furthermore, whilst pre-treatment of cells with either the JNK inhibitor SP600125, or the MEK-1 inhibitor PD98059, also reverses UV-C and cisplatin-induced apoptosis, the anti-apoptotic effect of MKP-2 overexpression is not additive with SP600125 but is with PD098059, suggesting that MKP-2 is involved in specifically terminating JNK activity and not ERK. The inability of MKP-2 to dephosphorylate ERK in vivo is also not due to the inability of Flag-MKP-2 to bind both ERK and JNK; phosphorylated forms of each kinase are co-precipitated with both WT and CI-MKP-2. Immunofluorescence studies however demonstrate that ERK is exclusively cytosolic in origin and not translocated to the nucleus following UV-C and cisplatin treatment whilst JNK is principally nuclear. These studies demonstrate the in vivo specificity of MKP-2 for JNK and not ERK and show that nuclear-targeted JNK is involved in genotoxic stress-induced apoptosis.  相似文献   

11.
Heat shock (HS) activates mitogen-activated protein (MAP) kinases. Although prior exposure to nonlethal HS makes cells refractory to the lethal effect of a subsequent HS, it is unclear whether this also occurs in MAP kinase activation. This study was undertaken to evaluate the effect of a heat pretreatment on MAP kinase activation by a subsequent HS and to elucidate its possible mechanism. Preheating did not make BEAS-2B cells refractory to extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) activation by a second HS but accelerated their inactivation after HS. The rapid inactivation of ERK and JNK was dependent on de novo protein synthesis and associated with the up-regulation of heat shock protein 70 (HSP70). Moreover, the inhibition of phosphatase activity reversed this rapid inactivation. MAP kinase phosphatase-1 (MKP-1) expression was increased by HS, and the presence of its phosphorylated form (p-MKP-1) correlated with the observed rapid ERK and JNK inactivation. Blocking induction of p-MKP-1 with antisense MKP-1 oligonucleotides suppressed the rapid inactivation of ERK and JNK in preheated cells. HSP70 overexpression caused the early phosphorylation of MKP-1. Moreover, MKP-1 phosphorylation and the rapid inactivation of ERK were inhibited by blocking HSP70 induction in preheated cells. In addition, MKP-1 was insolubilized by HS, and HSP70 associated physically with MKP-1, suggesting that a chaperone effect of HSP70 might have caused the early phosphorylation of MKP-1. These results indicate that preheating accelerated MAP kinase inactivation after a second HS and that this is related to a HSP70-mediated increase in p-MKP-1.  相似文献   

12.
Mitogen-activated protein (MAP) kinases play a pivotal role in the macrophages in the production of proinflammatory cytokines triggered by lipopolysaccharides. However, their function in the responses of macrophages to Gram-positive bacteria is poorly understood. Even less is known about the attenuation of MAP kinase signaling in macrophages exposed to Gram-positive bacteria. In the present study, we have investigated the regulation of MAP kinases and the role of MAP kinase phosphatase (MKP)-1 in the production of pro-inflammatory cytokines using murine RAW264.7 and primary peritoneal macrophages after peptidoglycan stimulation. Treatment of macrophages with peptidoglycan resulted in a transient activation of JNK, p38, and extracellular signal-regulated kinase. Most interestingly, MKP-1 expression was potently induced by peptidoglycan, and this induction was concurrent with MAP kinase dephosphorylation. Triptolide, a diterpenoid triepoxide, potently blocked the induction of MKP-1 by peptidoglycan and prolonged the activation of JNK and p38. Overexpression of MKP-1 substantially attenuated the production of tumor necrosis factor (TNF)-alpha induced by peptidoglycan, whereas knockdown of MKP-1 by small interfering RNA substantially increased the production of both TNF-alpha and interleukin-1 beta. Finally, we found that in primary murine peritoneal macrophages, MKP-1 induction following peptidoglycan stimulation also coincided with inactivation of JNK and p38. Blockade of MKP-1 induction resulted in a sustained activation of both JNK and p38 in primary macrophages. Our results reveal that MKP-1 critically regulates the expression of TNF-alpha and interleukin-1 beta in RAW264.7 cells and further suggest a central role for this phosphatase in controlling the inflammatory responses of primary macrophages to Gram-positive bacterial infection.  相似文献   

13.
Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function.  相似文献   

14.
15.
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK.  相似文献   

16.
Exposure of macrophages to LPS elicits the production of proinflammatory cytokines, such as TNF-alpha, through complex signaling mechanisms. Mitogen-activated protein (MAP) kinases play a critical role in this process. In the present study, we have addressed the role of MAP kinase phosphatase-1 (MKP-1) in regulating proinflammatory cytokine production using RAW264.7 macrophages. Analysis of MAP kinase activity revealed a transient activation of c-Jun N-terminal kinase (JNK) and p38 after LPS stimulation. Interestingly, MKP-1 was induced concurrently with the inactivation of JNK and p38, whereas blocking MKP-1 induction by triptolide prevented this inactivation. Ectopic expression of MKP-1 accelerated JNK and p38 inactivation and substantially inhibited the production of TNF-alpha and IL-6. Induction of MKP-1 by LPS was found to be extracellular signal-regulated kinase dependent and involved enhanced gene expression and increased protein stability. Finally, MKP-1 expression was also induced by glucocorticoids as well as cholera toxin B subunit, an agent capable of preventing autoimmune diseases in animal models. These findings highlight MKP-1 as a critical negative regulator of the macrophage inflammatory response, underscoring its premise as a potential target for developing novel anti-inflammatory drugs.  相似文献   

17.
Lin WW  Hsu YW 《Cellular signalling》2000,12(7):457-461
Extracellular signal-regulated kinase (ERK)-dependent phosphorylation is an important regulator for cytosolic phospholipase A(2) (cPLA(2)). In this study, we found that the protein synthesis inhibitor cycloheximide can potentiate thapsigargin-induced arachidonic acid (AA) release concomitant with ERK phosphorylation from murine RAW 264.7 macrophages. The cycloheximide effect is not due to the activation of p38 mitogen-activated protein kinase (MAPK) nor c-Jun NH(2)-terminal kinase (JNK), because the activator of both MAPKs anisomycin does not elicit AA release. Cycloheximide effect is additive to the tyrosine phosphatase inhibitor orthovanadate since these two stimuli induced sustained ERK activation respectively through inhibition of the translation and activity of MAPK phosphatase-1 (MKP-1).  相似文献   

18.
Cyclooxygenase-2 (COX-2) appears to play an important role in inflammation and carcinogenesis, and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) is a hydrophilic azo compound known to generate free radicals. Because reactive oxygen species (ROS) are known to elevate COX-2 expression, we evaluated the effect of AAPH on the expression of COX-2 in a human keratinocyte cell line, HaCaT. When cells were exposed to AAPH, marked COX-2 induction was observed. To clarify the signaling mechanism involved, we next investigated the effects of AAPH upon three major subfamilies of the mitogen-activated protein kinases (MAPKs). AAPH caused an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH(2)-terminal kinase (JNK). Furthermore, we found that PD98059, an ERK pathway inhibitor, and SB203580, a p38 MAPK inhibitor, diminished AAPH-induced COX-2 expression and PGE(2) production, whereas JNK inhibitor did not suppress COX-2 expression or PGE(2) production by AAPH. These findings suggest that the ERK and p38 MAPK pathways, but not the JNK pathway, are involved in AAPH-induced inflammatory progression. In addition, we found that both the water-soluble Vitamin E derivative, Trolox, and the green tea constituent, (-)-epigallocatechin gallate (EGCG), diminished AAPH-induced COX-2 expression and p38 activation.  相似文献   

19.
c-Jun N-terminal kinase (JNK) 2 is a member of the mitogen-activated protein (MAP) kinase group of signaling proteins. MAP kinases share a common sequence insertion called “MAP kinase insert”, which, for ERK2, has been shown to interact with regulatory proteins and, for p38α, has been proposed to be involved in the regulation of catalytic activity. We have determined the crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. We therefore suggest that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号