首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During renal development the cells in the medulla are exposed to elevated and variable interstitial osmolality. Heat shock protein 70 (HSP70) is a major molecular chaperone and plays an important role in the protection of cells in the renal medulla from high osmolality. The purpose of this study was to establish the time of immunolocalization and distribution of HSP70 in developing and adult rat kidney. In addition, changes in HSP70 immunolocalization following the infusion of furosemide were investigated. In adult animals, the HSP70 was expressed in the medullary thin ascending limb of Henle's loop (ATL) and inner medullary collecting duct (IMCD). In developing kidney, HSP70 immunoreactivity was first detected in the IMCD of the papillary tip on postnatal day 1. From four to 14 days of age, HSP70 was detected in the ATL after transformation from thick ascending limb, beginning at the papillary tip and ascending to the border between the outer and inner medulla. The immunolocalization of HSP70 in both the ATL and IMCD gradually increased during two weeks. The gradual increase in HSP70 was associated with an increase in its mRNA abundance. However, furosemide infusion resulted in significantly reduced HSP70 immunolocalization in the IMCD and ATL. These data demonstrated that the expression of HSP70 was closely correlated with changes in interstitial osmolality during the development of the kidney. We suggest that HSP70 protects ATL and IMCD cells in the inner medulla from the stress of high osmolality and may be involved in the transformation of the ATL of the long loop of Henle during renal development.  相似文献   

2.
A highly specific and reproducible approach for the simultaneous detection of enteric pathogenic bacteria was developed using bacterial hsp60 gene and molecular biological tools. A single pair of universal primers was derived from the highly conserved sequence of hsp60 genes encompassing a 600-bp hypervariable region. PCR amplification followed by either dot blot hybridization or restriction enzyme digestion performed on 38 enteric bacteria indicated that this approach could differentiate not only different genera such as Campylobacter, Yersinia and Vibrio, but also species that are closely related genetically, such as between C. jejuni and C. coli, or between Salmonella and Shigella or Escherichia coli.  相似文献   

3.
Wolbachia, an endosymbiont present in filarial nematodes, have been implicated in a variety of roles, including the worm development and survival. Elucidation of the role of Wolbachia in filarial nematode biology and pathogenesis has become the focus of many studies and its contribution to parasite survival or immune response is still unclear. Recombinant Wolbachia HSP60 decreases T cell activation and lymphoproliferation in filarial infected people compared to endemic controls as observed by the assessment of T cell activation markers and cytokine responses in the peripheral blood mononuclear cells. Reduced T cell activation may be linked to T regulatory cell activity since it is associated with increased expression of CTLA4 and CD25 on CD4(+) T cells in filarial infected group upon stimulation with recombinant Wolbachia HSP60. In addition, elevated interleukin-10 and TGF-β cytokines corroborate the reduced CD4(+) T cell activation and interferon-γ observed upon recombinant Wolbachia HSP60 stimulation in filarial patients. Hence, these findings indicate that Wolbachia HSP60 may also contribute to the immune modulation seen in filarial patients.  相似文献   

4.
5.
Wu Y  Pei Y  Qin Y 《Cell and tissue research》2011,344(2):355-363
Currently, no reports exist concerning the expression patterns and developmental changes of heat shock proteins (HSPs) in the reproductive system of the male rabbit. In the present study, the testes of rabbits were collected at post-natal months 1, 2, 3, 4, 5, and 40. HSP60, HSC70, HSP90, and HSPA2 were detected by both Western blot and immunohistochemical methods. The expression levels of HSP60 and HSC70 showed no apparent change during the developmental progress. HSP90 increased at the second month; prior to the third month, HSPA2 was expressed at a low level. Immunohistochemistry localized HSP60 in the cytoplasm of all of the cell types in the testis and in the apical pole of the spermatids. The distribution pattern of HSC70 and HSP90 was similar, both being mainly located in the spermatids of stage VII-VIII and in the cytoplasm of the spermatogonium. HSPA2 staining was mainly observed in the cytoplasm of pachytene spermatocytes and spermatids in testes of 3-, 4-, 5-, and 40-month-old rabbits. These results provide a basic reference point for studying the functions of HSPs in the male rabbit reproductive system and should be beneficial for the future determination of the mechanisms of heat shock on male rabbit fertility.  相似文献   

6.

Background

To prevent harmful autoimmunity most immune responses to self proteins are controlled by central and peripheral tolerance. T cells specific for a limited set of self-proteins such as human heat shock protein 60 (HSP60) may contribute to peripheral tolerance. It is not known whether HSP60-specific T cells are present at birth and thus may play a role in neonatal tolerance. We studied whether self-HSP60 reactive T cells are present in cord blood, and if so, what phenotype these cells have.

Methodology/Principal Findings

Cord blood mononuclear cells (CBMC) of healthy, full term neonates (n = 21), were cultured with HSP60 and Tetanus Toxoid (TT) to study antigen specific proliferation, cytokine secretion and up-regulation of surface markers. The functional capacity of HSP60-induced T cells was determined with in vitro suppression assays. Stimulation of CBMC with HSP60 led to CD4+ T cell proliferation and the production of various cytokines, most notably IL-10, Interferon-gamma, and IL-6. HSP60-induced T cells expressed FOXP3 and suppressed effector T cell responses in vitro.

Conclusion

Self-reactive HSP60 specific T cells are already present at birth. Upon stimulation with self-HSP60 these cells proliferate, produce cytokines and express FOXP3. These cells function as suppressor cells in vitro and thus they may be involved in the regulation of neonatal immune responses.  相似文献   

7.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

8.
Adjuvant arthritis (AA) is induced by immunizing Lewis rats with Mycobacterium tuberculosis suspended in adjuvant. The mycobacterial 65-kDa heat shock protein (HSP65) contains at least one epitope associated with the pathogenesis of AA: T cell clones that recognize an epitope formed by aa 180-188 of HSP65 react with self-cartilage and can adoptively transfer AA. Nevertheless, vaccination with HSP65 or some of its T cell epitopes can prevent AA by a mechanism that seems to involve cross-reactivity with the self-60-kDa HSP60. We recently demonstrated that DNA vaccination with the human hsp60 gene can inhibit AA. In the present work, we searched for regulatory epitopes using DNA vaccination with HSP60 gene fragments. We now report that specific HSP60 DNA fragments can serve as effective vaccines. Using overlapping HSP60 peptides, we identified a regulatory peptide (Hu3) that was specifically recognized by the T cells of DNA-vaccinated rats. Vaccination with Hu3, or transfer of splenocytes from Hu3-vaccinated rats, inhibited the development of AA. Vaccination with the mycobacterial homologue of Hu3 had no effect. Effective DNA or peptide vaccination was associated with enhanced T cell proliferation to a variety of disease-associated Ags, along with a Th2/3-like shift (down-regulation of IFN-gamma secretion and enhanced secretion of IL-10 and/or tumor growth factor beta1) in response to peptide Mt176-190 (the 180-188 epitope of HSP65). The regulatory response to HSP60 or its Hu3 epitope included both Th1 (IFN-gamma) and Th2/3 (IL-10/tumor growth factor beta1) secretors. These results show that regulatory mechanisms can be activated by immunization with relevant self-HSP60 epitopes.  相似文献   

9.
In this paper we show that hepoxilin A3 induces the expression of heat shock protein expression in human neutrophils at a concentration of 100 nM using Western blotting techniques employing the use of a commercial monoclonal antibody to HSP72. No regiospecificity was observed as the 8S enantiomer of HxA3 was as active as the 8R enantiomer of HxA3. Comparison of the effects of HxA3 with 12S-HETE and PGA1 indicated that HxA3 was as effective as 12S-HETE although PGA1 was essentially inactive at the same concentration used for these 12-lipoxygenase products.  相似文献   

10.
Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in na?ve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.  相似文献   

11.
Liao KW  Lin CS  Chen WL  Yang CT  Lin CM  Hsu WT  Lin YY  Chiu YH  Huang KC  Wu HY  Wu MS  Wu CJ  Mao SJ  Tsai NM 《Cytokine》2011,55(2):174-180
Anti-Helicobacter pylori heat shock protein 60 (HpHSP60) antibodies are usually found in H. pylori-infected patients and are known to be associated with the progression of gastric diseases. However, the effects of these antibodies on the functions of HpHSP60 have not been identified. This study aims to investigate the effects of the interaction between anti-HSP60 antibodies and HpHSP60 on inflammatory responses. Anti-HpHSP60 polyclonal sera and monoclonal antibodies (mAbs) were produced to evaluate their effects on HpHSP60-induced IL-8 and TNF-α activity. The results indicated that anti-HpHSP60 polyclonal sera collected from patients infected with H. pylori or from rabbit and mice immunized with HpHSP60 could significantly enhance HpHSP60-mediated IL-8 and TNF-α secretion from monocytic THP-1 cells. Similar effects were also found with anti-HpHSP60 mAbs. Further analysis revealed that this phenomenon was only carried out by anti-HpHSP60 antibody but not by other non-specific mAbs. Moreover, the non-specific mAbs decreased the synergism of HpHSP60 and anti-HpHSP60 mAbs in proinflammatory cytokine induction. Herein, we have examined the role of anti-HpHSP60 antibody in host immune responses for the first time. This study demonstrated that H. pylori HSP60/mAbs could modulate helicobacterial pathogenesis by increasing IL-8 and TNF-α production. The pathogen-specific antibodies may execute potential immune functions rather than recognize or neutralize microbes.  相似文献   

12.
We purified a large quantity of HSP90 from porcine testis by hydroxylapatite (HA-HSP90) and SDS-PAGE/electroelution (eluted-HSP90) to explore the molecular mechanism of HSP90 phosphorylation affecting its metabolism. The purified HSP90 was used as an antigen to raise polyclonal antibodies in rabbits. Immunoblot analysis revealed that most purified HSP90 was HSP90. Compared with the commercial anti-HSP90 antibody, the polyclonal antibody raised in this study could specifically detect the testis HSP90 and immunoprecipitate HSP90 from tissue homogenates or cell extracts. Incubation of the purified HSP90 or HSP90 immunoprecipitated from extracts of human A431 cells, Balb/c 3T3 fibroblasts, and porcine testis with [-32P]ATP/Mg2+ resulted in phosphorylation of HSP90. However, the eluted-HSP90 lost its phosphorylation ability when incubated with [-32P]ATP·Mg2+ alone but could be phosphorylated by various protein kinases, including PKA, CKII, kinase FA/GSK-3 , and AK. The order of phosphorylation of HSP90 by these kinases is PKA = CKII > AK >> kinase FA/GSK-3 .  相似文献   

13.
14.
The neuroprotective potential of heat shock protein 70 (HSP70)   总被引:19,自引:0,他引:19  
In response to many metabolic disturbances and injuries, including stroke, neurodegenerative disease, epilepsy and trauma, the cell mounts a stress response with induction of a variety of proteins, most notably the 70-kDa heat shock protein (HSP70). Whether stress proteins are neuroprotective has been hotly debated, as these proteins might be merely an epiphenomenon unrelated to cell survival. Only recently, with the availability of transgenic animals and gene transfer, has it become possible to overexpress the gene encoding HSP70 to test directly the hypothesis that stress proteins protect cells from injury. A few groups have now shown that overproduction of HSP70 leads to protection in several different models of nervous system injury. This review will cover these studies, along with the potential mechanisms by which HSP70 might mediate cellular protection.  相似文献   

15.
16.
17.
Heat shock proteins (HSP), highly conserved across species, are generally viewed as intracellular proteins thought to serve protective functions against infection and cellular stress. Recently, we have reported the surprising finding that human and chlamydial HSP60, both present in human atheroma, can activate vascular cells and macrophages. However, the transmembrane signaling pathways by which extracellular HSP60 may activate cells remains unclear. CD14, the monocyte receptor for LPS, binds numerous microbial products and can mediate activation of monocytes/macrophages and endothelial cells, thus promoting the innate immune response. We show here that human HSP60 activates human PBMC and monocyte-derived macrophages through CD14 signaling and p38 mitogen-activated protein kinase, sharing this pathway with bacterial LPS. These findings provide further insight into the molecular mechanisms by which extracellular HSP may participate in atherosclerosis and other inflammatory disorders by activating the innate immune system.  相似文献   

18.
One essential immunoregulatory function of heat shock protein (HSP) is activation of the innate immune system. We investigated the activation of human monocytes and monocyte-derived dendritic cells (DC) by recombinant human HSP60, human inducible HSP72, and preparations of human gp96 and HSP70 under stringent conditions, in the absence of serum and with highly purified monocytes. HSP60 induced human DC maturation and activated human DC to secrete proinflammatory cytokines. HSP72 induced DC maturation to a lesser extent, but activated human monocytes and immature DC as efficiently as HSP60 to release proinflammatory cytokines. The independence of the effects of HSP60 and HSP72 from endotoxin or another copurifying bacterial component was shown by the resistance of these effects to polymyxin B, their sensitivity to heat treatment, the inactivity of endotoxin controls at concentrations up to 100-fold above the endotoxin contents of the HSP, and the inactivity of a recombinant control protein. Preparations of HSP70, which consisted mainly of the constitutively expressed HSP73, induced only marginal cytokine release from monocytes. The gp96 preparations did not have significant effects on human monocytes and monocyte-derived DC, indicating that these human APC populations were not susceptible to gp96 signaling under the stringent conditions applied in this study. The biological activities of gp96 and HSP70 preparations were confirmed by their peptide binding activity. These findings show that HSP can differ considerably in the capacity to activate monocyte-derived APC under certain conditions and underline the potential of HSP60 and HSP72 as activation signals for the innate immune system.  相似文献   

19.
Human P1 protein, which is the homolog of the 60- to 65-kD heat shock "common" antigenic protein of numerous pathogenic organisms (synonyms: HSP60, GroEL homolog, or chaperonin), has been expressed to high level in Escherichia coli cells. A large number of well-characterized deletions of this protein spanning the entire sequence have been constructed and expressed. Methods to purify recombinant human HSP60 protein and its deletions from E. coli have been worked out. In addition, monoclonal antibodies to the human HSP60 protein have been raised and partially characterized. The availability of these materials should greatly aid in understanding the role of this highly conserved and immunologically important protein in autoimmune diseases and in cell structure and function.  相似文献   

20.
We have cloned a human gene encoding the 70,000-dalton heat shock protein (HSP70) from a human genomic library, using the Drosophila HSP70 gene as a heterologous hybridization probe. The human recombinant clone hybridized to a 2.6-kilobase polyadenylated mRNA from HeLa cells exposed to 43 degrees C for 2 h. The 2.6-kilobase mRNA was shown to direct the translation in vitro of a 70,000-dalton protein similar in electrophoretic mobility to the HSP70 synthesized in vivo. From the analysis of S1 nuclease-resistant mRNA-DNA hybrids, the HSP70 gene appears to be transcribed as an uninterrupted mRNA of 2.3 kilobases. We show that the cloned HSP70 gene contains the sequences necessary for heat shock-induced expression by two criteria. First, hamster cells transfected with a subclone containing the HSP70 gene and flanking sequences synthesized a HSP70-like protein upon heat shock. Second, human cells transfected with a chimeric gene containing the 5' flanking sequences of the HSP70 gene and the coding sequences of the bacterial chloramphenicol acetyltransferase gene transcribed the chimeric gene upon heat shock. We show that the HSP70 mRNA transcribed in an adenovirus 5 transformed human cell line (293 cells) is identical to the HSP70 mRNA induced by heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号