首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) genotype 1 infections are significantly more difficult to eradicate with PEG-IFN/ribavirin therapy, compared to HCV genotype 2. The aim of this work is to investigate the difference of immunological impairments underlying this phenomenon. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes and CD56+CD3− NK cells from cases of chronic hepatitis C were analyzed and assessed by treatment effect. Two strains of HCV were used to co-incubate with immune cells in vitro. NKG2D expression on peripheral CD56+CD3+ lymphocytes, but not NK cells, was significantly impaired in genotype 1 infection, compared to genotype 2. When peripheral blood mononuclear cells from healthy donors were co-incubated with TNS2J1, a genotype 1b/2a chimera strain, or with JFH1, a genotype 2a strain, genotype-specific decrease of NKG2D on CD56+CD3+ lymphocytes, but not NK cells, was observed. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes significantly correlated with reduction in serum HCV RNA levels from week 0 to week 4, and predicted treatment response. Ex vivo stimulation of peripheral CD56+CD3+ lymphocytes showed NKG2D expression-correlated IFN-γ production. In conclusion, Decreased NKG2D expression on CD56+CD3+ lymphocytes in chronic HCV genotype 1 infection predicts inferior treatment response to PEG-IFN/ribavirin therapy compared to genotype 2.  相似文献   

2.
Innate CD56(pos) natural killer (NK) and natural T (NT) cells comprise important hepatic antiviral effector lymphocytes whose activity is fine-tuned through surface NK receptors (NKRs). Dysregulation of NKRs in patients with long-standing hepatitis C virus (HCV) infection has been shown, but little is known regarding NKRs in acute infection. Treatment-na?ve patients with acute HCV (n = 22), including 10 with spontaneous recovery, were prospectively studied. CD56(pos) NT levels were reduced early in acute HCV infection and did not fluctuate over time. In resolving HCV infection, NT cells with a more activated phenotype (lower CD158A and higher natural cytotoxicity receptor expression) at baseline predated spontaneous recovery. Moreover, NKG2A expression on CD56(+) NT cells correlated directly with circulating HCV RNA levels. Deficient interleukin-13 (IL-13) production by NT cells and reduced IL-2-activated killing (LAK) at baseline were associated with the ultimate development of persistence. These results indicate a previously unappreciated role for NT cells in acute HCV infection and identify a potential target for pharmacologic manipulation.  相似文献   

3.
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.  相似文献   

4.
NK cells are potent activators of dendritic cells (DCs), but it remains obscure how third-party cells affect the ability of NK cells to modulate DC functions. We show here that NK cells derived from healthy donors (N-NK), when cocultured with human liver epithelial cells, induced maturation as well as activation of DCs, such as increased migratory capacity as well as T cell stimulatory activity. In contrast, NK cells from chronic hepatitis C virus-infected donors (HCV-NK) were not capable of activating DCs under the same conditions. In comparison to N-NK, HCV-NK showed higher expression of CD94/NKG2A and produced IL-10 and TGFbeta when cultured with hepatic cells, most of which express HLA-E, a ligand for CD94/NKG2A. Blockade of NKG2A restored the ability of HCV-NK to activate DCs, which appeared to result from the reduced NK cell production of IL-10 and TGFbeta. The blockade also endowed HCV-NK with an ability to drive DCs to generate Th1-polarized CD4+ T cells. These findings show that NK cell modulation of DCs is regulated by third-party cells through NK receptor and its ligand interaction. Aberrant expression of NK receptors may have an impact on the magnitude and direction of DC activation of T cells under pathological conditions, such as chronic viral infection.  相似文献   

5.
Nielsen N  Ødum N  Ursø B  Lanier LL  Spee P 《PloS one》2012,7(2):e31959
In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16(+)CD56(dim) and CD16(dim/-)CD56(bright). An expansion in the CD56(bright) NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4(+) T cells by CD56(dim) and CD56(bright) autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4(+) T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4(+) T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56(bright) NK cells but not by CD56(dim) NK cells. NK cell killing of activated CD4(+) T cells was suppressed by HLA-E on CD4(+) T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56(dim) and CD56(bright) NK cell-mediated elimination of activated autologous CD4(+) T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation.  相似文献   

6.
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.  相似文献   

7.
Yoon JC  Lim JB  Park JH  Lee JM 《Journal of virology》2011,85(23):12557-12569
The distinct feature of hepatitis C virus (HCV) infection is a high incidence of chronicity. The reason for chronic HCV infection has been actively investigated, and impairment of innate and adaptive immune responses against HCV is proposed as a plausible cause. Whereas functional impairment of HCV-specific T cells is well characterized, the role and functional status of natural killer (NK) cells in each phase of HCV infection are still elusive. We therefore investigated whether direct interaction between NK cells and HCV-infected cells modulates NK cell function. HCV-permissive human hepatoma cell lines were infected with cell culture-generated HCV virions and cocultured with primary human NK cells. Cell-to-cell contact between NK cells and HCV-infected cells reduced NK cells' capacity to degranulate and lyse target cells, especially in the CD56(dim) NK cell subset, which is characterized by low-density surface expression of CD56. The decrease in degranulation capacity was correlated with downregulated expression of NK cell-activating receptors, such as NKG2D and NKp30, on NK cells. The ability of NK cells to produce and secrete gamma interferon (IFN-γ) also diminished after exposure to HCV-infected cells. The decline of IFN-γ production was consistent with the reduction of NK cell degranulation. In conclusion, cell-to-cell contact with HCV-infected cells negatively modulated functional capacity of NK cells, and the inhibition of NK cell function was associated with downregulation of NK-activating receptors on NK cell surfaces. These observations suggest that direct cell-to-cell interaction between NK cells and HCV-infected hepatocytes may impair NK cell function in vivo and thereby contribute to the establishment of chronic infection.  相似文献   

8.
The expansion of the cytokine-producing CD56(bright) NK cell subset is a main feature of lymphocyte reconstitution after allogeneic hematopoietic stem cell transplantation (HSCT). We investigated phenotypes and functions of CD56(bright) and CD56(dim) NK subsets from 43 HLA-matched non-T cell-depleted HSCT donor-recipient pairs. The early expansion of CD56(bright) NK cells gradually declined in the posttransplant period but still persisted for at least 1 year and was characterized by the emergence of an unusual CD56(bright)CD16(low) subset with an intermediate maturation profile. The activating receptors NKG2D and NKp46, but also the inhibitory receptor NKG2A, were overexpressed compared with donor CD56(bright) populations. Recipient CD56(bright) NK cells produced higher amounts of IFN-gamma than did their respective donors and were competent for degranulation. Intracellular perforin content was increased in CD56(bright) NK cells as well as in T cells compared with donors. IL-15, the levels of which were increased in the posttransplant period, is a major candidate to mediate these changes. IL-15 serum levels and intracellular T cell perforin were significantly higher in recipients with acute graft-vs-host disease. Altogether, CD56(bright) NK cells postallogeneic HSCT exhibit peculiar phenotypic and functional properties. Functional interactions between this subset and T cells may be important in shaping the immune response after HSCT.  相似文献   

9.
Tuberculous pleuritis is a good model for the study of specific cells at the site of active Mycobacterium tuberculosis (Mtb) infection. We investigated the frequency and phenotype of NK cells in paired samples of peripheral blood and pleural fluid (PF) from patients with tuberculosis (TB) or parapneumonic infection. We demonstrated for the first time a reduction of NK cells in PF from TB with an enrichment in the CD56brightCD16- subset. In agreement, in PF NK cells we observed an increased expression of CD94, NKG2A, CD62L, and CCR7 molecules and lower expression of Bcl-2 and perforin. The activation markers CD69 and HLA-DR were also increased. The enrichment in the CD56bright subset was due to an increased susceptibility to apoptosis of CD56+CD16+ NK cells mediated by heat-labile and stable soluble factors present in tuberculous effusions and not in PF from other etiologies. Furthermore, in TB patients, Mtb-induced IFN-gamma production by PF NK cells was not dependent on the presence of CD3+, CD19+, and CD14+ cells, suggesting a direct interaction of CD56bright cells with Mtb and/or the involvement of other accessory cells present at the site of Mtb infection.  相似文献   

10.
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.  相似文献   

11.
Natural killer (NK) cell function, based on the expression of activating and inhibitory natural killer receptors (NKRs), may become abnormal during human immunodeficiency virus (HIV) infection. In this study, we investigated changes in receptor expression with individual and combinational analysis on NK cell subsets in HIV-infected Chinese. The results showed that natural killer group 2 member D (NKG2D) expression on total NK cells decreased significantly in HIV infection, while the expressions of natural killer group 2 member A (NKG2A) and killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail 1 (KIR3DL1) on total NK cells were not significantly different between any of the groups including HIV-positive treatment-naïve group, AIDS treatment-naïve group, HAART-treatment AIDS group and HIV-negative control group. Individual analysis of NKG2A+ and KIR3DL1+ cells revealed no significant differences in expression in any NK cell subsets between any of the groups, but the combinational analysis of NKG2DNKG2A+, and NKG2DKIR3DL1+ on the NK CD56dim cell subset in the AIDS group were increased compared to the HIV-negative control group. On the contrary, NKG2DNKG2A+ expression on the CD56bright subset decreased in the AIDS group compared to the control group. Highly active antiretroviral therapy (HAART) treatment almost completely restored the levels of these receptor expressions. The results indicate that the distinct alteration of activating and inhibitory NKR expression on NK cells and its subsets occurred during HIV progression. Moreover, the imbalanced change of activating and inhibitory NKRs on NK cells and its subsets may explain the impaired NK cell immunity in HIV infected individuals.  相似文献   

12.
To address the question whether the higher onset of apoptosis of circulating NK cell subsets might be activation induced in cancer patients, surface expression of NKG2D and serum (s) levels of MHC class I chain-related (MIC) proteins in relation to apoptosis marker and CD95 expression on NK cells were evaluated.Patients showed a significantly higher onset of spontaneous apoptosis of CD56dim NK cells. No difference in the CD95 expression could be detected between patients and normal controls (NCs). Patients’ CD56bright NK cells demonstrated a higher expression of NKG2D compared to CD56dim NK cells. The sMICB levels showed a higher level in patients versus NCs. No correlation between sMIC protein levels with both NKG2D expression and onset of spontaneous apoptosis of NK cell subsets was found.Our data suggest that the higher onset of apoptosis of circulating NK cell subsets of patients is not triggered by activation-induced cell death.  相似文献   

13.
The CD8(+) T cell compartment of human CMV-seropositive individuals characteristically contains a high proportion of cells that express NK cell receptors (NKRs) which may contribute to the surveillance of virus-infected cells. To test whether this enhanced expression is a direct and immediate result of CMV infection, we used DNA microarrays to analyze putative changes in the RNA expression level of 39 NKRs in CMV-specific CD8(+) T cells of renal transplant recipients experiencing primary CMV infection. Already in the acute phase of infection 29 NKRs were induced, of which 19 remained high 1 year after cessation of viral replication. Activating and inhibitory NKRs were induced to a similar extent. Detailed longitudinal flow cytometric analyses confirmed NKR changes at the protein level. Strikingly, a strong induction of CD94 on CD3(+) T cells was observed with surface expression of activating CD94(dim) NKG2C dimers appearing before inhibitory CD94(bright) NKG2A ones. After the acute phase of infection, the balance between inhibitory and activating receptors did not change. Thus, CMV infection induces a rapid and lasting change in the expression of NKRs on human CD8(+) T cells.  相似文献   

14.
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.  相似文献   

15.
Human natural killer (NK) cell differentiation, characterized by a loss of NKG2A in parallel with the acquisition of NKG2C, KIRs, and CD57 is stimulated by a number of virus infections, including infection with human cytomegalovirus (CMV), hantavirus, chikungunya virus, and HIV-1. Here, we addressed if HSV-2 infection in a similar way drives NK cell differentiation towards an NKG2A(-)NKG2C(+)KIR(+)CD57(+) phenotype. In contrast to infection with CMV, hantavirus, chikungunya virus, and HIV-1, recurrent HSV-2 infection did not yield an accumulation of highly differentiated NK cells in human peripheral blood. This outcome indicates that human HSV-2 infection has no significant imprinting effect on the human NK cell repertoire.  相似文献   

16.
17.
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants. Reduced numbers of NK cells have been reported in infants with severe RSV infection; however, the precise role of NK cells during acute RSV infection is unclear. In this study the NK and T cell phenotypes, LILRB1 gene polymorphisms and KIR genotypes of infants hospitalized with RSV infection were analyzed. Compared to controls, infants with acute RSV infection showed a higher proportion of LILRB1+ T cells; in addition, a subgroup of infants with RSV infection showed an increase in LILRB1+ NK cells. No differences in NKG2C, NKG2A, or CD161 expression between RSV infected infants and controls were observed. LILRB1 genotype distribution of the rs3760860 A>G, and rs3760861 A>G single nucleotide polymorphisms differed between infants with RSV infection and healthy donors, whereas no differences in any of the KIR genes were observed. Our results suggest that LILRB1 participates in the pathogenesis of RSV infection. Further studies are needed to define the role of LILRB1+ NK in response to RSV and to confirm an association between LILRB1 polymorphisms and the risk of severe RSV infection.  相似文献   

18.
Several studies have highlighted the important role played by murine natural killer (NK) cells in the control of influenza infection. However, human NK cell responses in acute influenza infection, including infection with the 2009 pandemic H1N1 influenza virus, are poorly documented. Here, we examined changes in NK cell phenotype and function and plasma cytokine levels associated with influenza infection and vaccination. We show that absolute numbers of peripheral blood NK cells, and particularly those of CD56(bright) NK cells, decreased upon acute influenza infection while this NK cell subset expanded following intramuscular influenza vaccination. NK cells exposed to influenza antigens were activated, with higher proportions of NK cells expressing CD69 in study subjects infected with seasonal influenza strains. Vaccination led to increased levels of CD25+ NK cells, and notably CD56(bright) CD25+ NK cells, whereas decreased amounts of this subset were present in the peripheral blood of influenza infected individuals, and predominantly in study subjects infected with the 2009 pandemic H1N1 influenza virus. Finally, acute influenza infection was associated with low plasma concentrations of inflammatory cytokines, including IFN-γ, MIP-1β, IL-2 and IL-15, and high levels of the anti-inflammatory cytokines IL-10 and IL-1ra. Altogether, these data suggest a role for the CD56(bright) NK cell subset in the response to influenza, potentially involving their recruitment to infected tissues and a local production and/or uptake of inflammatory cytokines.  相似文献   

19.
A better understanding of human NK cell development in vivo is crucial to exploit NK cells for immunotherapy. Here, we identified seven distinctive NK cell developmental stages in bone marrow of single donors using 10-color flow cytometry and found that NK cell development is accompanied by early expression of stimulatory co-receptor CD244 in vivo. Further analysis of cord blood (CB), peripheral blood (PB), inguinal lymph node (inLN), liver lymph node (liLN) and spleen (SPL) samples showed diverse distributions of the NK cell developmental stages. In addition, distinctive expression profiles of early development marker CD33 and C-type lectin receptor NKG2A between the tissues, suggest that differential NK cell differentiation may take place at different anatomical locations. Differential expression of NKG2A and stimulatory receptors (e.g. NCR, NKG2D) within the different subsets of committed NK cells demonstrated the heterogeneity of the CD56brightCD16+/− and CD56dimCD16+ subsets within the different compartments and suggests that microenvironment may play a role in differential in situ development of the NK cell receptor repertoire of committed NK cells. Overall, differential in situ NK cell development and trafficking towards multiple tissues may give rise to a broad spectrum of mature NK cell subsets found within the human body.  相似文献   

20.
Despite extensive use of nonhuman primates as models for infectious diseases and reproductive biology, imprecise phenotypic and functional definitions exist for natural killer (NK) cells. This deficit is particularly significant in the burgeoning use of small, less expensive New World primate species. Using polychromatic flow cytometry, we identified peripheral blood NK cells as CD3-negative and expressing a cluster of cell surface molecules characteristic of NK cells (i.e., NKG2A, NKp46, NKp30) in three New World primate species – common marmosets, cotton-top tamarins, and squirrel monkeys. We then assessed subset distribution using the classical NK markers, CD56 and CD16. In all species, similar to Old World primates, only a minor subset of NK cells was CD56+, and the dominant subset was CD56–CD16+. Interestingly, CD56+ NK cells were primarily cytokine-secreting cells, whereas CD56–CD16+ NK cells expressed significantly greater levels of intracellular perforin, suggesting these cells might have greater potential for cytotoxicity. New World primate species, like Old World primates, also had a minor CD56–CD16– NK cell subset that has no obvious counterpart in humans. Herein we present phenotypic profiles of New World primate NK cell subpopulations that are generally analogous to those found in humans. This conservation among species should support the further use of these species for biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号