首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poliovirus 1 isolants were recovered from finished drinking water produced by a modern, well-operated water treatment plant. These waters contained free chlorine residuals in excess of 1 mg/liter. The chlorine inactivation of purified high-titer preparations of two such isolants was compared with the inactivation behavior of two stock strains of poliovirus 1, LSc and Mahoney. The surviving fraction of virus derived from the two natural isolants was shown to be orders of magnitude greater than that of the standard strains. These results raise the question whether indirect drinking water standards based on free chlorine residuals are adequate public health measures, or whether direct standards based on virus determinations might be necessary.  相似文献   

2.
C H King  E B Shotts  Jr  R E Wooley    K G Porter 《Applied microbiology》1988,54(12):3023-3033
The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments.  相似文献   

3.
Several poliovirus and coxsackievirus isolates from environmental sources were compared with laboratory strains to determine their rate of inactivation by chlorine. All viruses were tested for up to 1,000 min in the presence of an initial free residual chlorine level of ca. 0.4 mg/liter. Coxsackievirus B5 (CB-5) isolates were found to be more resistant to chlorine than coxsackievirus B4 (CB-4), followed by poliovirus 1, 2, and 3 in order of decreasing resistance to chlorine. Environmental isolates of CB-5 were more resistant than the laboratory strain tested, and for two strains 12 and 22% of the input virus was still infectious after 100 min in the presence of free residual chlorine. Although CB-4 isolates were less resistant to chlorine than CB-5 isolates, after 1,000 min of contact 0.01% of the input virus was still infectious. Except for CB-5 isolates, isolates from environmental sources did not appear to be more resistant to chlorine than laboratory strains. Viruses isolated at different phases during the preparation of drinking water were not more resistant to chlorine and must thus have been protected by other mechanisms.  相似文献   

4.
Several poliovirus and coxsackievirus isolates from environmental sources were compared with laboratory strains to determine their rate of inactivation by chlorine. All viruses were tested for up to 1,000 min in the presence of an initial free residual chlorine level of ca. 0.4 mg/liter. Coxsackievirus B5 (CB-5) isolates were found to be more resistant to chlorine than coxsackievirus B4 (CB-4), followed by poliovirus 1, 2, and 3 in order of decreasing resistance to chlorine. Environmental isolates of CB-5 were more resistant than the laboratory strain tested, and for two strains 12 and 22% of the input virus was still infectious after 100 min in the presence of free residual chlorine. Although CB-4 isolates were less resistant to chlorine than CB-5 isolates, after 1,000 min of contact 0.01% of the input virus was still infectious. Except for CB-5 isolates, isolates from environmental sources did not appear to be more resistant to chlorine than laboratory strains. Viruses isolated at different phases during the preparation of drinking water were not more resistant to chlorine and must thus have been protected by other mechanisms.  相似文献   

5.
Survival of poliovirus within organic solids during chlorination.   总被引:7,自引:6,他引:1       下载免费PDF全文
Poliovirus in fecal homogenates was used to determine the protection against inactivation by chlorination afforded virus that was occluded within particulates. Virus that was closely associated with or occluded within small fecal particulates was protected. A fourfold increase in combined residual chlorine was required to achieve the same degree of inactivation for occluded virus as for free or secondarily adsorbed virus. A combined chlorine residual of 6.6 mg/liter was necessary to achieve 50% inactivation in 15 min at pH 8.0 and 22 degrees C in a particulate suspension containing occluded virus compared to 1.4 mg/liter for free virus. These differences were found to be relatively small compared to differences due to the presence of dissolved organics or between free and combined chlorine residuals. The results suggest different mechanisms of protection due to adsorption and occlusion.  相似文献   

6.
Poliovirus in fecal homogenates was used to determine the protection against inactivation by chlorination afforded virus that was occluded within particulates. Virus that was closely associated with or occluded within small fecal particulates was protected. A fourfold increase in combined residual chlorine was required to achieve the same degree of inactivation for occluded virus as for free or secondarily adsorbed virus. A combined chlorine residual of 6.6 mg/liter was necessary to achieve 50% inactivation in 15 min at pH 8.0 and 22 degrees C in a particulate suspension containing occluded virus compared to 1.4 mg/liter for free virus. These differences were found to be relatively small compared to differences due to the presence of dissolved organics or between free and combined chlorine residuals. The results suggest different mechanisms of protection due to adsorption and occlusion.  相似文献   

7.
The influence of pH, application technique, and chlorine-to-nitrogen weight ratio on the bactericidal activity of inorganic chloramine compounds was determined with stock and environmental strains of Escherichia coli, Salmonella spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacter cloacae. The rate of inactivation increased from 1.5 to 2 times as the chlorine-to-nitrogen weight ratio was adjusted from 2:1 to 5:1, 5 to 6 times as the pH was decreased from 8 to 6, and 5 to 6 times as the concentration was increased from 1 to 5 mg/liter. Separate additions of free chlorine and ammonia (concurrent addition and preammoniation) into seeded water at or below pH 7.5 resulted in killing comparable to that observed with free chlorine (99% inactivation in less than 20 s). At pH 8, inactivation by separate additions was considerably slower and was comparable to that by prereacted chloramine compounds (99% inactivation in 25 to 26 min). Determination of the effectiveness of inorganic chloramine compounds as primary disinfectants for drinking water must consider the method of application, pH and concentrations of chlorine and ammonia.  相似文献   

8.
The susceptibility of toxigenic Aeromonas spp. to free chlorine in drinking water supplies, and the influence of environmental temperature on the bactericidal activity of the oxidant, were evaluated. The results showed inactivation curves characterized by an initial phase of rapid reduction of viable cells followed by a slow inactivation of bacteria. The effect of the chlorine compound was markedly influenced by water temperature. At a summer water temperature (20 °C), the efficacy of the chlorine concentrations tested was found to be two to three times lower compared to that found at a winter temperature (5 °C). Resistance was moderately, but significantly, greater in Aer. hydrophila vs Aer. caviae and Aer. sobria , but all Aeromonas spp. were more susceptible than Escherichia coli . Selective pressure with free chlorine did not produce Aeromonas cells with higher levels of chlorine resistance.  相似文献   

9.
Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5 degrees C than at 15 degrees C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15 degrees C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5 degrees C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States.  相似文献   

10.
AIMS: To compare the disinfection ability of two widely used electrolytic generation systems (ClorTec and MIOX) and the conventional chlorine disinfectant (sodium hypochlorite) using three strains of Bacillus subtilis spores and MS2 bacteriophage. METHODS AND RESULTS: Three B. subtilis aerobic spore strains (ATCC1A1, 35021 and 35946) and the bacteriophage MS2 (ATCC 15597-B1) were propagated and sporulated. Four indicator organisms were exposed to four disinfectant treatments for comparing the effectiveness of inactivation: hypochlorite, ClorTec, MIOX and MIOX-anode. The results indicated that the two electrolytic generation systems were as effective as the conventional chlorination for the inactivation of micro-organisms used. Some data points showed the variation using anova analysis, in which the inactivation of MIOX and ClorTec was higher than that of hypochlorite. CONCLUSIONS: The ClorTec and MIOX systems are quite similar to hypochlorite in the inactivation-effectiveness for aerobic spores and bacteriophage in drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: Laboratory-scale investigation proved that gaseous chlorine could be replaced by either ClorTec or MIOX systems for the drinking water treatment utilities, which still could maintain the same disinfection efficiency.  相似文献   

11.
Hepatitis A virus (HAV) and selected indicator organisms were mixed together in chlorine-demand-free buffers at pH 6, 8, or 10 and exposed to free chlorine residuals, and the survival kinetics of individual organisms were compared. HAV was enumerated by a most-probable-number dilution assay, using PLC/PRF/5 liver cells for propagation of the virus and radioimmunoassay for its detection. At all pH levels, HAV was more sensitive than Mycobacterium fortuitum, coliphage V1 (representing a type of phage common in some sewage-polluted waters), and poliovirus type 2. Under certain conditions, HAV was more resistant than Escherichia coli, Streptococcus faecalis, coliphage MS2, and reovirus type 3. It was always more resistant than SA-11 rotavirus. Evidence is presented that conditions generally specified for the chlorine disinfection of drinking-water supplies will also successfully inactivate HAV and that HAV inactivation by free chlorine residuals can reliably be monitored by practical indicator systems consisting of appropriate combinations of suitable indicators such as coliform and acid-fast bacteria, coliphages, the standard plate count, and fecal streptococci.  相似文献   

12.
Hepatitis A virus (HAV) and selected indicator organisms were mixed together in chlorine-demand-free buffers at pH 6, 8, or 10 and exposed to free chlorine residuals, and the survival kinetics of individual organisms were compared. HAV was enumerated by a most-probable-number dilution assay, using PLC/PRF/5 liver cells for propagation of the virus and radioimmunoassay for its detection. At all pH levels, HAV was more sensitive than Mycobacterium fortuitum, coliphage V1 (representing a type of phage common in some sewage-polluted waters), and poliovirus type 2. Under certain conditions, HAV was more resistant than Escherichia coli, Streptococcus faecalis, coliphage MS2, and reovirus type 3. It was always more resistant than SA-11 rotavirus. Evidence is presented that conditions generally specified for the chlorine disinfection of drinking-water supplies will also successfully inactivate HAV and that HAV inactivation by free chlorine residuals can reliably be monitored by practical indicator systems consisting of appropriate combinations of suitable indicators such as coliform and acid-fast bacteria, coliphages, the standard plate count, and fecal streptococci.  相似文献   

13.
Wang  Yang  Zhang  Xiaojian  Feng  Shuo  Niu  Zhangbin  Chen  Chao 《Annals of microbiology》2009,59(2):353-358
To study the inactivation characteristic of iron bacteria isolated from real drinking water distribution systems and investigate the influence of disinfectants, pH and temperature on inactivation process. Two kinds of iron bacteria were isolated from the water phase in distribution systems and identified asAcinetobacter baumannii andMicrobacterium oxydans. Bench-scale study on inactivation of the two kinds of iron bacteria were carried out, with the impact of disinfectants, pH and temperature under different levels concerned. Free chlorine and monochloramine could achieve an inactivation rate of 99.9% on bothA. Baumannii andM. Oxydans with the CT-value of 10 mg/L·min. Free chlorine was more effective than monochloramine with 1∼2 log higher inactivation rate.Microbacterium oxydans was more resistant to disinfectant thanA. Baumannii. High pH enhanced the inactivation of A.baumannii and low temperature availed the inactivation of bothA. Baumannii andMicrobacterium. For iron bacteria in the water, inactivation ratio could not reach 99% when residual chlorine was 0.05 mg/L in drinking water distribution systems according to Standards for Drinking Water Quality.  相似文献   

14.
Chlorine and thermal treatments are the most commonly used procedures to control and prevent Legionella proliferation in drinking water systems of large buildings. However, cases of legionellosis still occur in facilities with treated water. The purpose of this work was to model the effect of temperature and free chlorine applied in similar exposure conditions as in drinking water systems on five Legionella spp. strains and two amoebal strains of the genera Acanthamoeba. Inactivation models obtained were used to determine the effectiveness of the treatments applied which resulted more effective against Legionella than Acanthamoeba, especially those in cystic stages. Furthermore, to determine the influence of the relationship between L. pneumophila and Acanthamoeba spp. on the treatment effectiveness, inactivation models of the bacteria-associated amoeba were also constructed and compared to the models obtained for the free living bacteria state. The Legionella-amoeba association did not change the inactivation models, but it reduced the effectiveness of the treatments applied. Remarkably, at the lowest free chlorine concentration, 0.5 mg L-1, as well as at the lowest temperatures, 50°C and 55°C, the influence of the Legionella-amoeba associate state was the strongest in reducing the effectiveness of the treatments compared to the free Legionella state. Therefore, the association established between L. pneumophila and amoebae in the water systems indicate an increased health risk in proximal areas of the system (close to the tap) where lower free chlorine concentrations and lower temperatures are commonly observed.  相似文献   

15.
More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15°C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration × contact time (CT) values (mg·min/liter) required to achieve 2-, 3-, and 4-log10 reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log10 CT values at 5°C ranging from ≤0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log10 CT values at 5°C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15°C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA''s Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.Disinfection processes are critical for the reduction of infectious virus concentrations in source water, because viruses are less efficiently removed by primary treatment of drinking water (e.g., coagulation and filtration) than are other pathogen types of concern (e.g., bacteria and protozoa). Over the years, many disinfection studies have focused on the inactivation of viruses in purified and buffered, demand-free, reagent-grade water (RGW). However, relatively few investigators have examined the impact of water quality during the disinfection process, even though water quality has been found to be a significant factor for inactivation of viruses.Several researchers found that the inactivation rate of poliovirus by free chlorine increased as the ionic concentration of water increased. In one study, poliovirus 1 was inactivated three times faster in boric acid buffer than in purified water (3). In addition, several investigators found that when the ionic content of buffered water was raised by the addition of NaCl or KCl, poliovirus 1 was inactivated two to four times faster than in the buffered water alone (2, 16, 17). In another study, poliovirus 1 was inactivated 10 times more rapidly in drinking water than in purified water (4).Studies conducted with natural waters have demonstrated both increased and decreased disinfection efficacy of chlorine in these waters compared to purified or buffered waters. In a study comparing chlorine disinfection in purified water and Potomac estuarine water, coxsackievirus A9 was inactivated more rapidly in the source water. The remaining study viruses (coxsackievirus B1, echovirus 7, adenovirus 3, poliovirus 1, and reovirus 3) were all inactivated more slowly in the source water (13). Bacteriophage MS2 was inactivated more slowly by free chlorine in two types of surface water than in buffered, demand-free water. However, there was no difference between the inactivation rates of this virus in the buffered water and groundwater (10). In another study, both feline calicivirus and adenovirus 40 were inactivated more slowly in treated groundwater than in buffered, demand-free water (21).The United States Environmental Protection Agency''s (USEPA) Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources (Guidance Manual) recommends disinfectant concentration × contact time (CT) values of 4, 6, and 8 to achieve 2-, 3-, and 4-log10 inactivation, respectively, with chlorine at 5°C and pH 6 to 9 (23). These CT values, which incorporate a safety factor of 3, were obtained from inactivation experiments conducted with monodispersed hepatitis A virus (HAV) in buffered, demand-free water. As water quality can significantly affect the disinfection efficacy of chlorine, it is unclear whether these CT value recommendations are sufficient for inactivation of viruses in source water. More information is needed to systematically examine the role of water quality in chlorine disinfection of viruses.The objective of the present study was to examine the disinfection efficacy of free chlorine on selected viruses from USEPA''s Contaminant Candidate List (CCL) (22) in one untreated and two partially treated source waters from distinct geographical regions. By comparing the efficacy of chlorine disinfection in the source water types to disinfection in buffered, chlorine-demand-free RGW (7), the impact of water quality could be examined. The four representative CCL viruses selected for this study included human adenovirus 2 (HAdV2), echovirus 1 (E1), coxsackievirus B5 (CVB5), and murine norovirus (MNV), a surrogate for human norovirus (22). The viruses were selected because they were previously found to be the least effectively inactivated viruses of their type in RGW (6). Disinfection experiments were carried out in duplicate in pH 7 and 8 source water at 5 and 15°C using 0.2 and 1 mg/liter free chlorine. Inactivation curves were plotted using Microsoft Excel, and CT values were calculated using the efficiency factor Hom (EFH) model (9).  相似文献   

16.
Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. We compared susceptibility of three C. jejuni strains and Escherichia coli ATCC 11229 with standard procedures used to disinfect water. Inactivation of bacterial preparations with 0.1 mg of chlorine and 1.0 mg of monochloramine per liter was determined at pH 6 and 8 and at 4 and 25 degrees C. Under virtually every condition tested, each of the three C. jejuni strains was more susceptible than the E. coli control strain, with greater than 99% inactivation after 15 min of contact with 1.0 mg of monochloramine per liter or 5 min of contact with 0.1 mg of free chlorine per liter. Results of experiments in which an antibiotic-containing medium was used suggest that a high proportion of the remaining cells were injured. An animal-passaged C. jejuni strain was as susceptible to chlorine disinfection as were laboratory-passaged strains. These results suggest that disinfection procedures commonly used for treatment of drinking water to remove coliform bacteria are adequate to eliminate C. jejuni and further correlate with the absence of outbreaks associated with properly treated water.  相似文献   

17.
Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. We compared susceptibility of three C. jejuni strains and Escherichia coli ATCC 11229 with standard procedures used to disinfect water. Inactivation of bacterial preparations with 0.1 mg of chlorine and 1.0 mg of monochloramine per liter was determined at pH 6 and 8 and at 4 and 25 degrees C. Under virtually every condition tested, each of the three C. jejuni strains was more susceptible than the E. coli control strain, with greater than 99% inactivation after 15 min of contact with 1.0 mg of monochloramine per liter or 5 min of contact with 0.1 mg of free chlorine per liter. Results of experiments in which an antibiotic-containing medium was used suggest that a high proportion of the remaining cells were injured. An animal-passaged C. jejuni strain was as susceptible to chlorine disinfection as were laboratory-passaged strains. These results suggest that disinfection procedures commonly used for treatment of drinking water to remove coliform bacteria are adequate to eliminate C. jejuni and further correlate with the absence of outbreaks associated with properly treated water.  相似文献   

18.
Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus   总被引:10,自引:6,他引:4       下载免费PDF全文
Ct values, the concentration of free chlorine multiplied by time of contact with virus, were determined for free-chlorine inactivation experiments carried out with chloroform-extracted (dispersed) and non-chloroform-extracted (aggregated) feline calicivirus (FCV), adenovirus type 40 (AD40), and polio virus type 1 (PV-1). Experiments were carried out with high and low pH and temperature conditions. Ct values were calculated directly from bench-scale free-chlorine inactivation experiments and from application of the efficiency factor Hom model. For each experimental condition, Ct values were higher at pH 8 than at pH 6, higher at 5°C than at 15°C, and higher for dispersed AD40 (dAD40) than for dispersed FCV (dFCV). dFCV and dAD40 were more sensitive to free chlorine than dispersed PV-1 (dPV-1). Cts for 2 log inactivation of aggregated FCV (aFCV) and aggregated PV-1 (aPV-1) were 31.0 and 2.8 orders of magnitude higher than those calculated from experiments carried out with dispersed virus. Cts for 2 log inactivation of dFCV and dAD40 in treated groundwater at 15°C were 1.2 and 13.7 times greater than in buffered-demand-free (BDF) water experiments at 5°C. Ct values listed in the U.S. Environmental Protection Agency (EPA) Guidance Manual were close to, or lower than, Ct values generated for experiments conducted with dispersed and aggregated viruses suspended in BDF water and for dispersed viruses suspended in treated groundwater. Since the state of viruses in water is most likely to be aggregated and associated with organic or inorganic matter, reevaluation of the EPA Guidance Manual Ct values is necessary, since they would not be useful for ensuring inactivation of viruses in these states. Under the tested conditions, dAD40, dFCV, aFCV, dPV-1, and aPV-1 particles would be inactivated by commonly used free chlorine concentrations (1 mg/liter) and contact times (60 to 237 min) applied for drinking water treatment in the United States.  相似文献   

19.
Aims: To evaluate the reduction of human norovirus (HuNoV) by chlorine disinfection under typical drinking water treatment conditions. Methods and Results: HuNoV, murine norovirus (MNV) and poliovirus type 1 (PV1) were inoculated into treated water before chlorination, collected from a drinking water treatment plant, and bench‐scale free chlorine disinfection experiments were performed for two initial free chlorine concentrations, 0·1 and 0·5 mg l?1. Inactivation of MNV reached more than 4 log10 after 120 and 0·5 min contact time to chlorine at the initial free chlorine concentrations of 0·1 and 0·5 mg l?1, respectively. Conclusions: MNV was inactivated faster than PV1, and there was no significant difference in the viral RNA reduction rate between HuNoV and MNV. The results suggest that appropriate water treatment process with chlorination can manage the risk of HuNoV infection via drinking water supply systems. Significance and Impact of the Study: The data obtained in this study would be useful for assessing or managing the risk of HuNoV infections from drinking water exposure.  相似文献   

20.
Persistence of Bacillus atrophaeus subsp. globigii spores on corroded iron coupons in drinking water was studied using a biofilm annular reactor. Spores were inoculated at 10(6) CFU/ml in the dechlorinated reactor bulk water. The dechlorination allowed for observation of the effects of hydraulic shear and biofilm sloughing on persistence. Approximately 50% of the spores initially adhered to the corroded iron surface were not detected after 1 month. Addition of a stable 10 mg/liter free chlorine residual after 1 month led to a 2-log(10) reduction of adhered B. atrophaeus subsp. globigii, but levels on the coupons quickly stabilized thereafter. Increasing the free chlorine concentration to 25 or 70 mg/liter had no additional effect on inactivation. B. atrophaeus subsp. globigii spores injected in the presence of a typical distribution system chlorine residual (approximately 0.75 mg/liter) resulted in a steady reduction of adhered B. atrophaeus subsp. globigii over 1 month, but levels on the coupons eventually stabilized. Adding elevated chlorine levels (10, 25, and 70 mg/liter) after 1 month had no effect on the rate of inactivation. Decontamination with elevated free chlorine levels immediately after spore injection resulted in a 3-log(10) reduction within 2 weeks, but the rate of inactivation leveled off afterward. This indicates that free chlorine did not reach portions of the corroded iron surface where B. atrophaeus subsp. globigii spores had adhered. B. atrophaeus subsp. globigii spores are capable of persisting for an extended time in the presence of high levels of free chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号