首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of non-specific cholinesterase was demonstrated histochemically in satellite cells of the spinal ganglia from adult rat, cat, rabbit and baboon. The spinal ganglia of newborn rats displayed distinct intraneuronal reactivity for non-specific cholinesterase while a low reactivity was observed in satellite cells. The spinal and trigeminal ganglia of adult mice contained satellite cells with non-specific cholinesterase reactivity only sporadically. Most of reaction product for non-specific cholinesterase activity (from low to high intensity) was found in perikarya of the neurons. Spinal and trigeminal ganglia of the same mice embryo exhibited diffuse staining for non-specific cholinesterase activity remaining in the spinal ganglia of newborn mice. The trigeminal ganglia of newborn mice exhibited, however, more differentiated pattern of the positive reaction for non-specific cholinesterase like adult animals. The pattern of histochemical distribution of non-specific cholinesterase activity in trigeminal and spinal ganglia from mice of various ages corresponds with morphological differentiation and maturation undergoing in a rostrocaudal wave. Intraneuronal presence of non-specific cholinesterase activity in sensory ganglia during development and in adult animals gives a new possibilities for explanation of the functional involvement of this enzyme in the nervous system.  相似文献   

2.
In this paper the treatment of patients with chronic, intractable trigeminal neuralgia by invasive electrical stimulation of the Gasserion ganglion is reviewed. Two different surgical techniques are employed in this treatment. Most frequently, a method similar to the traditional technique for percutaneous glycerol and radiofrequency trigeminal rhizolysis is used: a small percutaneous stimulation electrode is advanced under fluoroscopic control through a thin needle via the foramen ovale to the Gasserian cistern. Some neurosurgeons use an open surgical technique by which the Gasserian ganglion is approached subtemporally and extradurally, and the bipolar pad electrode is sutured to the dura. When percutaneous test stimulation is successful (at least 50% pain relief) the electrode is internalized and connected to a subcutaneous pulse generator or RF-receiver. Data from 8 clinical studies, including 267 patients have been reviewed. Of all 233 patients with medication-resistant atypical trigeminal neuralgia 48% had at least 50% long term pain relief. The result of test stimulation is a good predictor of the long term effect, because 83% of all patients with successful test stimulation had at least 50% long term relief, and 70% had at least 75% long term relief. Patients generally preferred this invasive method over TENS. The success rate in patients with postherpetic trigeminal neuralgia was very low (less than 10%). It is suggested that the likelihood of pain relief by electrical stimulation is inversely related to the degree of sensory loss. It is concluded that invasive stimulation of the Gasserian ganglion is a promising treatment modality for patients with chronic, intractable, atypical trigeminal neuralgia.  相似文献   

3.
In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.  相似文献   

4.
5.
6.
Prrxl1-CreER(T2) transgenic mice expressing tamoxifen-inducible Cre recombinase were generated by modifying a Prrxl1-containing BAC clone. Cre recombination activity was examined in Prrxl1-CreER(T2); Rosa26 reporter mice at various embryonic and postnatal stages. Pregnant mice were treated with a single dose of tamoxifen at embryonic day (E) 9.5 or E12.5, and X-gal staining was performed 2 days later. Strong X-gal staining was observed in the somatosensory ganglia (e.g., dorsal root and trigeminal ganglia) and the first central sites for processing somatosensory information (e.g., spinal dorsal horn and trigeminal nerve-associated nuclei). When tamoxifen was administered at postnatal day (P) 20 or in adulthood (P120), strong Cre recombination activity was present in the primary somatosensory ganglia, while weak Cre recombination activity was found in the spinal dorsal horn, mesencephalic trigeminal nucleus, principal sensory trigeminal nucleus, and spinal trigeminal nucleus. This mouse line provides a useful tool for exploring genes' functions in the somatosensory system in a time-controlled way.  相似文献   

7.
8.
It has been postulated that the aberrant projection of sympathetic axons to individual primary sensory neurons may provide the morphological basis for pain-related behaviors in rat models of chronic pain syndrome. Since nerve growth factor (NGF) can elicit the collateral sprouting of noradrenergic sympathetic terminals, it might be predicted that NGF plays a role in mediating the sprouting of sympathetic axons into sensory ganglia. Using a line of transgenic mice overexpressing NGF among glial cells, it was first found that trigeminal ganglia from adult transgenic mice possessed significantly higher levels of NGF protein in comparison to age-matched wild-type mice; as well, detectable levels of NGF mRNA transgene expression were present in both the ganglia and brain stem. Within the trigeminal ganglia, a small proportion of the sensory neuronal population stained immunohistochemically for NGF; a higher percentage of NGF-positive neurons was evident in transgenic mice. New sympathetic axons extended into the trigeminal ganglia of transgenic mice only and formed perineuronal plexuses surrounding only those neurons immunostained for NGF. In addition, such plexuses were accompanied by glial processes from nonmyelinating Schwann cells. From these data, we propose that accumulation of glial-derived NGF by adult sensory neurons and its putative release into the ganglionic environment induce the directional growth of sympathetic axons to the source of NGF, namely, the cell bodies of primary sensory neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 347–360, 1998  相似文献   

9.
Hanssons' enzyme histochemical method for the demonstration of carbonic anhydrase has been used to examine primary sensory neurons of cranial nerves in the rat (cochlear ganglion cells excluded). Numerous carbonic anhydrase positive neurons were present in the trigeminal and geniculate ganglia as well as in the mesencephalic trigeminal nucleus. A few carbonic anhydrase positive ganglion cells were found in the nodose ganglion, but none in the petrosal and vestibular ganglia. However, in the latter ganglia, satellite cells surrounding the neurons frequently showed staining for carbonic anhydrase.  相似文献   

10.
Summary Hansson's enzyme histochemical method for the demonstration of carbonic anhydrase has been used to examine primary sensory neurons of cranial nerves in the rat (cochlear ganglion cells excluded). Numerous carbonic anhydrase positive neurons were present in the trigeminal and geniculate ganglia as well as in the mecencephalic trigeminal nucleus. A few carbonic anhydrase positive ganglion cells were found in the nodose ganglion, but none in the petrosal and vestibular ganglia. However, in the latter ganglia, satellite cells surrounding the neurons frequently showed staining for carbonic anhydrase.  相似文献   

11.
Among sensory systems, the somatic sense is exceptional in its ability to detect a wide range of chemical, mechanical and thermal stimuli. How this sensory diversity is established during development remains largely elusive. We devised a method (BAPTISM) that uses the photoconvertible fluorescent protein Kaede to simultaneously analyze birthdate and cell fate in live zebrafish embryos. We found that trigeminal sensory ganglia are formed from early-born and late-born neurons. Early-born neurons give rise to multiple classes of sensory neurons that express different ion channels. By contrast, late-born neurons are restricted in their fate and do not form chemosensory neurons expressing the ion channel TrpA1b. Accordingly, larvae lacking early-born neurons do not respond to the TrpA1b agonist allyl isothiocyanate. These results indicate that the multimodal specification and function of trigeminal sensory ganglia depends on the timing of neurogenesis.  相似文献   

12.
The expression of the P2X3 nucleotide receptor in embryonic day 14–18, postnatal day 1–14 and adult mouse sensory ganglia was examined using immunohistochemistry. Nearly all sensory neurons in dorsal root ganglia, trigeminal ganglia and nodose ganglia in embryos at embryonic day 14 expressed P2X3 receptors, but after birth there was a gradual decline to about 50% of neurons showing positive immunostaining for P2X3. In embryos there were only small neurons, while from postnatal day 7 both large and small neurons were present. Isolectin B4 (IB4)-positive neurons in dorsal, trigeminal and nodose ganglia did not appear until birth, but the numbers increased to about 50% by postnatal day 14 when a high proportion of IB4-positive neurons were also positively labelled for the P2X3 receptor. About 10% of neurons in dorsal, trigeminal and nodose ganglia were positive for calcitonin gene-related peptide in embryos, nearly all of which stained for P2X3 receptors. This increased postnatally to about 35–40% in adults, although only a few colocalised with P2X3 receptors. Neurofilament 200 was expressed in about 50% of neurons in trigeminal ganglia in the embryo, and this level persisted postnatally. All neurofilament 200-positive neurons stained for P2X3 in embryonic dorsal root ganglia, trigeminal ganglia and nodose ganglia, but by adulthood this was significantly reduced. The neurons that were positive for calbindin in embryonic dorsal, trigeminal and nodose ganglia showed colocalisation with P2X3 receptors, but few showed colocalisation postnatally.  相似文献   

13.
Sensory innervation of lingual musculature was studied in young adult Wistar rats using retrograde labeling by horseradish peroxidase (HRP) and combined silver impregnation and acetylcholinesterase (AchE) methods. Intra-lingual injection of HRP resulted in labeling of neuronal somata in the trigeminal, superior vagal, and second cervical spinal (C2) ganglia. When HRP was directly applied to the proximal stump of severed hypoglossal nerve, labeling occurred only in the cervical and superior vagal ganglia. Morphometric analysis revealed that the labeled neurons were of the small-sized category in all ganglia. However, in the trigeminal and C2 ganglia, labeling occurred also among the medium-sized neurons. Combined silver and AchE preparations from lingual muscles revealed the absence of typical muscle spindles. Instead, there were free and spiral nerve terminals in the interstitium, and epilemmal knob-like or bouton-like endings surrounding non-encapsulated muscle fibers. These terminals showed AchE -ve reaction in contrast to the motor ones. Few ganglionic cells were scattered along the hypoglossal nerve with uniform AchE +ve reaction in their perikarya. This indicates that medium-sized neurons in the trigeminal and C2 ganglia, and probably sensory neurons along the hypoglossal nerve mediate lingual muscle sensibility perceived by atypical sensory terminals.  相似文献   

14.
LATENTLY infected sensory ganglia have been thought to be the source of virus for various clinical manifestations of recurrent herpetic disease in man1,2. In direct support of this concept, we recently showed that herpes simplex virus can induce a latent infection in the spinal ganglia of mice3. This murine infection has not, however, been shown to be accompanied by recurrent disease. Recurrent herpetic eye infection can be produced in the rabbit4. If sensory ganglia are involved in recurrent disease, then trigeminal ganglia from rabbits undergoing such recurrent infection would be expected to harbour latent virus. We now report that herpes simplex virus does indeed induce latent infection in trigeminal ganglia of rabbits presenting recurrent eye infection. As in the experiments with mice, infectious virus could not be recovered directly; it was only found when ganglia were established as organ cultures in vitro.  相似文献   

15.
We found that the dorsal root ganglia (DRG) and trigeminal ganglia of mouse embryos express the E-cadherin cell-cell adhesion molecule and analyzed its expression profile. E-cadherin expression began around Embryonic Day 12 (E12) in these ganglia, thereafter increased, and persisted to the adult stage. This cadherin was expressed by 10 and 30% of DRG neurons in E17 and postnatal animals, respectively, as well as by satellite cells and some Schwann cells. E-cadherin-positive primary sensory fibers terminated only in a narrow region of the dorsal horn of the spinal cord, which was identified as part of lamina II by double-staining for E-cadherin and substance P or somatostatin. This E-cadherin expressing area of the spinal cord extended to part of the trigeminal nucleus in the medulla. These results showed that E-cadherin is expressed in a particular subset of primary sensory neurons which may have specific functional properties. We suggest that this adhesion molecule may play a role in the selective adhesion of sensory neuronal fibers.  相似文献   

16.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

17.
Knaut H  Blader P  Strähle U  Schier AF 《Neuron》2005,47(5):653-666
Sensory neurons with related functions form ganglia, but how these precisely positioned clusters are assembled has been unclear. Here, we use the zebrafish trigeminal sensory ganglion as a model to address this question. We find that some trigeminal sensory neurons are born at the position where the ganglion is assembled, whereas others are born at a distance and have to migrate against opposing morphogenetic movements to reach the site of ganglion assembly. Loss of Cxcr4b-mediated chemokine signaling results in the formation of mispositioned ganglia. Conversely, ectopic sources of the chemokine SDF1a can attract sensory neurons. Transplantation experiments reveal that neuron-neuron interaction and the adhesion molecules E- and N-Cadherin also contribute to ganglion assembly. These results indicate that ganglion formation depends on the interplay of birthplace, chemokine attraction, cell-cell interaction, and cadherin-mediated adhesion.  相似文献   

18.
Thirty-nine patients with trigeminal neuralgia, not controlled by medical treatment, were treated by radio-frequency thermocoagulation of the Gasserian ganglion and its posterior rootlets. Thirty-six received satisfactory pain relief. In 30 patients touch sensation in the treated territory was preserved. The corneal reflex was affected in only six patients, two of whom subsequently developed keratitis. There were no other complications apart from a minor unpleasant sensation in eight patients. By selectively destroying pain fibres this technique offers the scope of preserving touch sensation in the treated area. Moreover, the zone of analgesia can be restricted to the affected region by sensory mapping through electrode stimulation before thermocoagulation. Its simplicity, low morbidity, associated short hospital stay, and the increased ability to preserve touch sensation, especially of the cornea, seem to make it preferable to other forms of surgical management for trigeminal neuralgia.  相似文献   

19.
Summary Growth hormone-releasing factor (GRF)-like immunoreactivity has been demonstrated in the trigeminal and spinal ganglia of fetal, young and adult rats by use of peroxidase-antiperoxidase immunohistochemistry. GRF-like-immunoreactive cells first appear during the second half of embryonic life, as early as day 17. In untreated animals the GRF-immunoreactive elements form approximately 1% of all ganglion cells in the trigeminal and spinal ganglia; their numbers do not change significantly during development. The granular immunoreaction product is confined to perikarya, especially to the perinuclear region. Nerve fibers displaying GRF-like immunoreactivity were found neither in the ganglia, nor in the corresponding central and peripheral areas of termination. The possible role of GRF in sensory ganglia is discussed.  相似文献   

20.
Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号