首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YJ Kuo  FY Tsuang  JS Sun  CH Lin  CH Chen  JY Li  YC Huang  WY Chen  CB Yeh  JF Shyu 《PloS one》2012,7(7):e40272

Introduction

Treatment for osteoporosis commonly includes the use of bisphosphonates. Serious side effects of these drugs are caused by the inhibition of bone resorption as a result of osteoclast apoptosis. Treatment using calcitonin along with bisphosphonates overcomes these side-effects in some patients. Calcitonin is known to inhibit bone resorption without reducing the number of osteoclasts and is thought to prolong osteoclast survival through the inhibition of apoptosis. Further understanding of how calcitonin inhibits apoptosis could prove useful to the development of alternative treatment regimens for osteoporosis. This study aimed to analyze the mechanism by which calcitonin influences osteoclast apoptosis induced by a bisphosphate analog, sintered dicalcium pyrophosphate (SDCP), and to determine the effects of co-treatment with calcitonin and SDCP on apoptotic signaling in osteoclasts.

Methods

Isolated osteoclasts were treated with CT, SDCP or both for 48 h. Osteoclast apoptosis assays, pit formation assays, and tartrate-resistant acid phosphatase (TRAP) staining were performed. Using an osteoporosis rat model, ovariectomized (OVX) rats received calcitonin, SDCP, or calcitonin + SDCP. The microarchitecture of the fifth lumbar trabecular bone was investigated, and histomorphometric and biochemical analyses were performed.

Results

Calcitonin inhibited SDCP-induced apoptosis in primary osteoclast cultures, increased Bcl-2 and Erk activity, and decreased Mcl-1 activity. Calcitonin prevented decreased osteoclast survival but not resorption induced by SDCP. Histomorphometric analysis of the tibia revealed increased bone formation, and microcomputed tomography of the fifth lumbar vertebrate showed an additive effect of calcitonin and SDCP on bone volume. Finally, analysis of the serum bone markers CTX-I and P1NP suggests that the increased bone volume induced by co-treatment with calcitonin and SDCP may be due to decreased bone resorption and increased bone formation.

Conclusions

Calcitonin reduces SDCP-induced osteoclast apoptosis and increases its efficacy in an in vivo model of osteoporosis.  相似文献   

2.

Background

Bone remodeling relies on the tightly regulated interplay between bone forming osteoblasts and bone digesting osteoclasts. Several studies have now described the molecular mechanisms by which osteoblasts control osteoclastogenesis and bone degradation. It is currently unclear whether osteoclasts can influence bone rebuilding.

Methodology/Principal Findings

Using in vitro cell systems, we show here that mature osteoclasts, but not their precursors, secrete chemotactic factors recognized by both mature osteoblasts and their precursors. Several growth factors whose expression is upregulated during osteoclastogenesis were identified by DNA microarrays as candidates mediating osteoblast chemotaxis. Our subsequent functional analyses demonstrate that mature osteoclasts, whose platelet-derived growth factor bb (PDGF-bb) expression is reduced by siRNAs, exhibit a reduced capability of attracting osteoblasts. Conversely, osteoblasts whose platelet-derived growth factor receptor β (PDGFR-β) expression is reduced by siRNAs exhibit a lower capability of responding to chemotactic factors secreted by osteoclasts.

Conclusions/Significance

We conclude that, in vitro mature osteoclasts control osteoblast chemotaxis via PDGF-bb/PDGFR-β signaling. This may provide one key mechanism by which osteoclasts control bone formation in vivo.  相似文献   

3.

Background

The mismatch of the elastic modulus between implants and bone tissue can lead to stress shielding, bone resorption and poor osseointegration. Compared with normal bone tissue, this problem is much more serious in osteoporosis. The purpose of this study was designed to find out whether the novel Ti-24Nb-4Zr-7.9Sn (TNZS) implant with low elastic modulus and high strength was suitable for biomedical material, especially in osteoporosis.

Methodology

In vitro study, the viability and Alkaline phosphatase (ALP) activity of osteoblasts on the TNZS and Ti-6V-4V (TAV) were observed. In vivo study, 30 adult female New Zealand rabbits were selected and divided randomly into two groups: sham-operation (SHAM, n = 6) and ovariectomised in combination with methylprednisolone treatment (OVX+MP, n = 24). Two implants were then placed in the tibia of each OVX + MP group rabbit, one in each side (left: TAV; right: TNZS). The OVX + MP group rabbits were sacrificed at 4 and 12 weeks after the implantation. The osteoporotic bone responses to the TNZS and TAV implants were evaluated by pull-out test, Micro-CT analyses and histological observation.

Principal Findings

Compared with the TAV group, the TNZS group showed a significant increase (P<0.05) in cell viability and ALP activity, new bone formation and pull-out force.

Conclusions

The novel TNZS implants show good biological performance both in vitro and in vivo, which suggests that the alloys are suitable for biomedical applications, especially in osteoporosis.  相似文献   

4.
5.
Postmenopausal osteoporosis (OP) is a major concern for public health. Low‐level laser therapy (LLLT) has a positive effect on the health of bone marrow mesenchymal stem cells (BMMSCs). The purpose of this study is to evaluate the influence of LLLT and oxytocin (OT) incubation—individually and in combination—on osteoporotic BMMSCs in ovariectomized rats. Twelve female rats were randomized into two groups to undergo either a sham surgery (sham group) or ovariectomy‐induced osteoporosis (OVX group). MSCs harvested from the BM of healthy and OVX rats underwent culture expansion. There were five groups. In Groups one (sham‐BMMSC) and two (OVX‐BMMSC) the cells were held in osteogenic condition medium without any intervention. In the group three (OT), OT incubation with optimum dose was performed for 48 h (two times, 10?12 molar). In Group four, laser‐treated‐OVX‐BMMSCs were treated with optimum protocol of LLLT (one time, 1.2 J/cm2). In Group five (laser + OT group), the OT incubation plus the laser irradiation was performed. The biostimulatory effect of LLLT is demonstrated by a significant increase in the viability of OVX‐BMMSCs, cell cycle, and extracellular levels of Transforming growth factor beta (TGF‐β), insulin‐like growth factor‐I (IGF‐I), and Alkaline phosphatase (ALP) compared to control OVX‐BMMSCs and/or the sham group. OT incubation and laser + OT incubation have a positive effect on OVX‐BMMSCs. However, LLLT is more effective statistically. We conclude that LLLT significantly improved cell viability, enhanced the osteogenic potential of the OVX‐BMMSCs, and increased the extracellular levels of the TGF‐β, IGF‐I, and ALP.  相似文献   

6.
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.  相似文献   

7.
Wang Y  Li L  Moore BT  Peng XH  Fang X  Lappe JM  Recker RR  Xiao P 《PloS one》2012,7(4):e34641

Background

Osteoporosis mainly occurs in postmenopausal women, which is characterized by low bone mineral density (BMD) due to unbalanced bone resorption by osteoclasts and formation by osteoblasts. Circulating monocytes play important roles in osteoclastogenesis by acting as osteoclast precursors and secreting osteoclastogenic factors, such as IL-1, IL-6 and TNF-α. MicroRNAs (miRNAs) have been implicated as important biomarkers in various diseases. The present study aimed to find significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis.

Methodology/Principal Findings

We used ABI TaqMan® miRNA array followed by qRT-PCR validation in circulating monocytes to identify miRNA biomarkers in 10 high and 10 low BMD postmenopausal Caucasian women. MiR-133a was upregulated (P=0.007) in the low compared with the high BMD groups in the array analyses, which was also validated by qRT-PCR (P=0.044). We performed bioinformatic target gene analysis and found three potential osteoclast-related target genes, CXCL11, CXCR3 and SLC39A1. In addition, we performed Pearson correlation analyses between the expression levels of miR-133a and the three potential target genes in the 20 postmenopausal women. We did find negative correlations between miR-133a and all the three genes though not significant.

Conclusions/Significance

This is the first in vivo miRNA expression analysis in human circulating monocytes to identify novel miRNA biomarkers underlying postmenopausal osteoporosis. Our results suggest that miR-133a in circulating monocytes is a potential biomarker for postmenopausal osteoporosis.  相似文献   

8.
Zhang Z  Shively JE 《PloS one》2010,5(11):e13985

Background

Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.

Methods and Findings

Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).

Conclusion

Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis.  相似文献   

9.

Background

The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD).

Methods

BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls.

Results

PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group.

Conclusion

BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.  相似文献   

10.

Background

Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.

Methods

Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point.

Results

Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels.

Conclusion

BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.  相似文献   

11.

Background

Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF) has been shown to protect the tubular epithelium against apoptosis.

Methodology/Principal Findings

In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis.

Conclusions/Significance

Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.  相似文献   

12.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   

13.

Background

Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown.

Methodology/Principal Findings

The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts.

Conclusions/Significance

Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis.  相似文献   

14.

Background

Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway.

Methodology/Principal Findings

Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis.

Conclusions

Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli.  相似文献   

15.

Background

The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities.

Results

The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells.

Conclusion

These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.  相似文献   

16.

Background

Due to their self-renewal, embryonic stem cells (ESCs) are attractive cells for applications in regenerative medicine and tissue engineering. Although ESC differentiation has been used as a platform for generating bone in vitro and in vivo, the results have been unsatisfactory at best. It is possible that the traditional culture methods, which have been used, are not optimal and that other approaches must be explored.

Methodology/Principal Findings

ESCs were differentiated into osteoblast lineage using a micro-mass approach. In response to osteogenic differentiation medium, many cells underwent apoptosis, while others left the micro-mass, forming small aggregates in suspension. These aggregates were cultured in three different culture conditions (adhesion, static suspension, and stirred suspension), then examined for osteogenic potential in vitro and in vivo. In adhesion culture, ESCs primed to become osteoblasts recommitted to the adipocyte lineage in vitro. In a static suspension culture, resulting porous aggregates expressed osteoblasts markers and formed bone in vivo via intermembranous ossification. In a stirred suspension culture, resulting non-porous aggregates suppressed osteoblast differentiation in favor of expanding progenitor cells.

Conclusions/Significance

We demonstrate that microenvironment modulates cell fate and subsequent tissue formation during ESC differentiation. For effective tissue engineering using ESCs, it is important to develop optimized cell culture/differentiation conditions based upon the influence of microenvironment.  相似文献   

17.

Background

Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.

Methodology and Principal Findings

In this report, we show that feeding a high quality diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only between postnatal day 20 (PND20) and PND34 prevented ovariectomy (OVX)-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.

Conclusions/Significance

These results indicate: 1) a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2) the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.  相似文献   

18.

Background

Tranilast (N-(3′,4′-dimethoxycinnamonyl) anthranilic acid) has been shown to be therapeutically effective, exerting anti-inflammatory and anti-oxidative effects via acting on macrophage. We hypothesized that Tranilast may protect against oxidative stress-induced bone loss via action in osteoclasts (OCs) that shares precursors with macrophage.

Methodology and Principal Findings

To elucidate the role of Tranilast, ovariectomy (OVX)-induced bone loss in vivo and OC differentiation in vitro were evaluated by µCT and tartrate-resistant acid phosphatase staining, respectively. Oral administration of Tranilast protected against OVX-induced bone loss with decreased serum level of reactive oxygen species (ROS) in mice. Tranilast inhibited OC formation in vitro. Decreased osteoclastogenesis by Tranilast was due to a defect of receptor activator of nuclear factor-κB ligand (RANKL) signaling, at least partly via decreased activation of nuclear factor-κB and reduced induction and nuclear translocation of nuclear factor of activated T cells, cytoplasmic 1 (or NFAT2). Tranilast also decreased RANKL-induced a long lasting ROS level as well as TGF-β to inhibit osteoclastogenesis. Reduced ROS caused by Tranilast was due to the induction of ROS scavenging enzymes (peroxiredoxin 1, heme oxygenase-1, and glutathione peroxidase 1) as well as impaired ROS generation.

Conclusions/Significance

Our data suggests the therapeutic potential of Tranilast for amelioration of bone loss and oxidative stress due to loss of ovarian function.  相似文献   

19.

Background

Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function.

Methods

For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model.

Results

Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2–5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1–2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression.

Conclusions

Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.  相似文献   

20.

Background

Induction of osteolytic bone lesions in multiple myeloma is caused by an uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Current management of myeloma bone disease is limited to the use of antiresorptive agents such as bisphosphonates.

Methodology/Principal Findings

We tested the effects of daily administered parathyroid hormone (PTH) on bone disease and myeloma growth, and we investigated molecular mechanisms by analyzing gene expression profiles of unique myeloma cell lines and primary myeloma cells engrafted in SCID-rab and SCID-hu mouse models. PTH resulted in increased bone mineral density of myelomatous bones and reduced tumor burden, which reflected the dependence of primary myeloma cells on the bone marrow microenvironment. Treatment with PTH also increased bone mineral density of uninvolved murine bones in myelomatous hosts and bone mineral density of implanted human bones in nonmyelomatous hosts. In myelomatous bone, PTH markedly increased the number of osteoblasts and bone-formation parameters, and the number of osteoclasts was unaffected or moderately reduced. Pretreatment with PTH before injecting myeloma cells increased bone mineral density of the implanted bone and delayed tumor progression. Human global gene expression profiling of myelomatous bones from SCID-hu mice treated with PTH or saline revealed activation of multiple distinct pathways involved in bone formation and coupling; involvement of Wnt signaling was prominent. Treatment with PTH also downregulated markers typically expressed by osteoclasts and myeloma cells, and altered expression of genes that control oxidative stress and inflammation. PTH receptors were not expressed by myeloma cells, and PTH had no effect on myeloma cell growth in vitro.

Conclusions/Significance

We conclude that PTH-induced bone formation in myelomatous bones is mediated by activation of multiple signaling pathways involved in osteoblastogenesis and attenuated bone resorption and myeloma growth; mechanisms involve increased osteoblast production of anti-myeloma factors and minimized myeloma induction of inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号