首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with?

Results

All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections.

Conclusions

We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.  相似文献   

2.

Background

In prostate cancer, genes encoding androgen-regulated, Y-chromosome-encoded, and tissue-specific antigens may all be overexpressed. In the adult male host, however, most high affinity T cells targeting these potential tumor rejection antigens will be removed during negative selection. In contrast, the female mature T-cell repertoire should contain abundant precursors capable of recognizing these classes of prostate cancer antigens and mediating effective anti-tumor immune responses.

Methodology/Principal Findings

We find that syngeneic TRAMP-C2 prostatic adenocarcinoma cells are spontaneously rejected in female hosts. Adoptive transfer of naïve female lymphocytes to irradiated male hosts bearing pre-implanted TRAMP-C2 tumor cells slows tumor growth and mediates tumor rejection in some animals. The success of this adoptive transfer was dependent on the transfer of female CD4 T cells and independent of the presence of CD25-expressing regulatory T cells in the transferred lymphocytes. We identify in female CD4 T cells stimulated with TRAMP-C2 a dominant MHC II-restricted response to the Y-chromosome antigen DBY. Furthermore, CD8 T cell responses in female lymphocytes to the immunodominant MHC I-restricted antigen SPAS-1 are markedly increased compared to male mice. Finally, we find no exacerbation of graft-versus-host disease in either syngeneic or minor-antigen mismatched allogeneic lymphocyte adoptive transfer models by using female into male versus male into male cells.

Conclusions/Significance

This study shows that adoptively transferred female lymphocytes, particularly CD4 T cells, can control the outgrowth of pre-implanted prostatic adenocarcinoma cells. This approach does not significantly worsen graft-versus-host responses suggesting it may be viable in the clinic. Further, enhancing the available immune repertoire with female-derived T cells may provide an excellent pool of prostate cancer reactive T cells for further augmentation by combination with either vaccination or immune regulatory blockade strategies.  相似文献   

3.
4.

Background

The presence of chloroplast-related DNA sequences in the nuclear genome is generally regarded as a relic of the process by which genes have been transferred from the chloroplast to the nucleus. The remaining chloroplast encoded genes are not identical across the plant kingdom indicating an ongoing transfer of genes from the organelle to the nucleus.

Scope

This review focuses on the active processes by which the nuclear genome might be acquiring or removing DNA sequences from the chloroplast genome. Present knowledge of the contribution to the nuclear genome of DNA originating from the chloroplast will be reviewed. In particular, the possible effects of stressful environments on the transfer of genetic material between the chloroplast and nucleus will be considered. The significance of this research and suggestions for the future research directions to identify drivers, such as stress, of the nuclear incorporation of plastid sequences are discussed.

Conclusions

The transfer to the nuclear genome of most of the protein-encoding functions for chloroplast-located proteins facilitates the control of gene expression. The continual transfer of fragments, including complete functional genes, from the chloroplast to the nucleus has been observed. However, the mechanisms by which the loss of functions and physical DNA elimination from the chloroplast genome following the transfer of those functions to the nucleus remains obscure. The frequency of polymorphism across chloroplast-related DNA fragments within a species will indicate the rate at which these DNA fragments are incorporated and removed from the chromosomes.Key words: Stress, DNA transfer, organelles and nucleus, genome integration  相似文献   

5.

Background

Bioactive cyclic peptides derived from natural sources are well studied, particularly those derived from non-ribosomal synthetases in fungi or bacteria. Ribosomally synthesised bioactive disulphide-bonded loops represent a large, naturally enriched library of potential bioactive compounds, worthy of systematic investigation.

Results

We examined the distribution of short cyclic loops on the surface of a large number of proteins, especially membrane or extracellular proteins. Available three-dimensional structures highlighted a number of disulphide-bonded loops responsible for the majority of the likely binding interactions in a variety of protein complexes, due to their location at protein-protein interfaces. We find that disulphide-bonded loops at protein-protein interfaces may, but do not necessarily, show biological activity independent of their parent protein. Examining the conservation of short disulphide bonded loops in proteins, we find a small but significant increase in conservation inside these loops compared to surrounding residues. We identify a subset of these loops that exhibit a high relative conservation, particularly among peptide hormones.

Conclusions

We conclude that short disulphide-bonded loops are found in a wide variety of biological interactions. They may retain biological activity outside their parent proteins. Such structurally independent peptides may be useful as biologically active templates for the development of novel modulators of protein-protein interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-305) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

The nature of the association between the number of oocytes retrieved and in vitro fertilization (IVF) outcomes after fresh embryo transfer remains unclear because of conflicting results reported in the studies on this subject. In addition, the influence of the quality of the embryos transferred is usually neglected. The objective of this study is to assess the relationships of the number of oocytes retrieved, the number and quality of embryos transferred, and the prospects of pregnancy after fresh embryo transfer.

Methods

The data on 3131 infertile women undergoing their first IVF treatment cycle between January 2009 and December 2010 were collected retrospectively. Restricted cubic splines and stratified analyses were used to explore the relationships between the number of oocytes retrieved, the number and quality of embryos transferred, and the IVF outcomes.

Results

When stratified by the number and quality of transferred embryos, no significant differences in the chances for clinical pregnancy and live birth were found in three groups of oocytes yielded (≤6, 7–14, or ≥15). The relationship between the number of oocytes retrieved and pregnancy is nearly a reflection of the pattern of the relationship between the number of oocytes retrieved and the probability of having two good-quality embryos transferred. The patients with the “optimal” number of oocytes were not only younger but also had the highest probability of having two good-quality embryos replaced.

Conclusions

Similarly aged patients have similar pregnancy prospects after fresh embryo transfer when the same number and quality of embryos are replaced, irrespective of their number of oocytes. Selecting the desired number of good-quality embryos for transfer is the key to IVF success. Thus, aiming at retrieving an optimal number of oocytes to maximize IVF outcomes in a fresh cycle could place undue stress on the patients and may not be the best medical decision.  相似文献   

7.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

9.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

10.

Background

In prokaryotes and some eukaryotes, genetic material can be transferred laterally among unrelated lineages and recombined into new host genomes, providing metabolic and physiological novelty. Although the process is usually framed in terms of gene sharing (e.g. lateral gene transfer, LGT), there is little reason to imagine that the units of transfer and recombination correspond to entire, intact genes. Proteins often consist of one or more spatially compact structural regions (domains) which may fold autonomously and which, singly or in combination, confer the protein''s specific functions. As LGT is frequent in strongly selective environments and natural selection is based on function, we hypothesized that domains might also serve as modules of genetic transfer, i.e. that regions of DNA that are transferred and recombined between lineages might encode intact structural domains of proteins.

Methodology/Principal Findings

We selected 1,462 orthologous gene sets representing 144 prokaryotic genomes, and applied a rigorous two-stage approach to identify recombination breakpoints within these sequences. Recombination breakpoints are very significantly over-represented in gene sets within which protein domain-encoding regions have been annotated. Within these gene sets, breakpoints significantly avoid the domain-encoding regions (domons), except where these regions constitute most of the sequence length. Recombination breakpoints that fall within longer domons are distributed uniformly at random, but those that fall within shorter domons may show a slight tendency to avoid the domon midpoint. As we find no evidence for differential selection against nucleotide substitutions following the recombination event, any bias against disruption of domains must be a consequence of the recombination event per se.

Conclusions/Significance

This is the first systematic study relating the units of LGT to structural features at the protein level. Many genes have been interrupted by recombination following inter-lineage genetic transfer, during which the regions within these genes that encode protein domains have not been preferentially preserved intact. Protein domains are units of function, but domons are not modules of transfer and recombination. Our results demonstrate that LGT can remodel even the most functionally conservative modules within genomes.  相似文献   

11.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

12.

Background

Recent experimental evidence suggests that stressed males find heavier women more attractive than non-stressed males. The aim of this study is to examine whether these results also appear in actual mating patterns of adults from a national sample.

Methods

Regression analysis linking partner weight measures to own measures of childhood stress, as measured by mistreatment. Cross-sectional data from the National Longitudinal Study of Adolescent Health, Romantic Partners Sample is used to measure partner weight, childhood stressful events, and socio-demographic characteristics. Childhood experiences of adult mistreatment are retrospectively collected.

Results

Men who experienced childhood mistreatment are more likely to have obese female partners during young adulthood. The results are strongest for interactions with social services, adult neglect and physical abuse. We also present novel evidence of the opposite association in similarly stressed women whose male partners are more likely to be thin.

Conclusions

These results suggest that preferences for partner characteristics are sensitive to histories of stress and that previously hypothesized patterns occur outside the experimental setting.  相似文献   

13.
Nord EA  Shea K  Lynch JP 《Annals of botany》2011,108(2):391-404

Background and Aims

Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils.

Methods

To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments.

Key Results

The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater.

Conclusions

Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments.  相似文献   

14.

Background

Lactation is a key aspect of mammalian evolution for adaptation of various reproductive strategies along different mammalian lineages. Marsupials, such as tammar wallaby, adopted a short gestation and a relatively long lactation cycle, the newborn is immature at birth and significant development occurs postnatally during lactation. Continuous changes of tammar milk composition may contribute to development and immune protection of pouch young. Here, in order to address the putative contribution of newly identified secretory milk miRNA in these processes, high throughput sequencing of miRNAs collected from tammar milk at different time points of lactation was conducted. A comparative analysis was performed to find distribution of miRNA in milk and blood serum of lactating wallaby.

Results

Results showed that high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway. In contrast, highly expressed milk miRNAs could be detected at significantly higher levels in neonate blood serum in comparison to adult blood, suggesting milk miRNAs may be absorbed through the gut of the young.

Conclusion

The function of miRNA in mammary gland development and secretory activity has been proposed, but results from the current study also support a differential role of milk miRNA in regulation of development in the pouch young, revealing a new potential molecular communication between mother and young during mammalian lactation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1012) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
Kemal Kazan 《Annals of botany》2013,112(9):1655-1665
  相似文献   

17.

Background

An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.

Methodology/Principal Findings

Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.

Conclusions/Significance

The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.  相似文献   

18.

Objectives

The purpose of this study was to analyze characteristics, reasons for transferring, and reasons for discontinuing care among patients defined as lost to follow-up (LTFU) from an antiretroviral therapy (ART) clinic in Nairobi, Kenya.

Design

The study used a prospective cohort of patients who participated in a randomized, controlled ART adherence trial between 2006 and 2008.

Methods

Participants were followed from pre-ART clinic enrollment to 18 months after ART initiation, and were defined as LTFU if they failed to return to clinic 4 weeks after their last scheduled visit. Reasons for loss were captured through phone call or home visit. Characteristics of LTFU who transferred care and LTFU who did not transfer were compared to those who remained in clinic using log-binomial regression to estimate risk ratios.

Results

Of 393 enrolled participants, total attrition was 83 (21%), of whom 75 (90%) were successfully traced. Thirty-seven (49%) were alive at tracing and 22 (59%) of these reported having transferred their antiretroviral care. In the final model, transfers were more likely to have salaried employment [Risk Ratio (RR), 2.7; 95% confidence interval (CI), 1.2-6.1; p=0.020)] and pay a higher monthly rent (RR, 5.8; 95% CI, 1.3-25.0; p=0.018) compared to those retained in clinic. LTFU who did not transfer care were three times as likely to be men (RR, 3.1; 95% CI, 1.1-8.1; p=0.028) and nearly 4 times as likely to have a primary education or less (RR, 3.8; 95% CI, 1.3-10.6; p=0.013). Overall, the most common reason for LTFU was moving residence, predominantly due to job loss or change in employment.

Conclusion

A broad definition of LTFU may include those who have transferred their antiretroviral care and thereby overestimate negative effects on ART continuation. Interventions targeting men and considering mobility due to employment may improve retention in urban African ART clinics.

Clinical Trials

The study’s ClinicalTrials.gov identifier is NCT00273780.  相似文献   

19.

Background

Long term retention of patients on antiretroviral therapy (ART) in Africa''s rapidly expanding programmes is said to be 60% at 2 years. Many reports from African ART programmes make little mention of patients who are transferred out to another facility, yet Malawi''s national figures show a transfer out of 9%. There is no published information about what happens to patients who transfer-out, but this is important because if they transfer-in and stay alive in these other facilities then national retention figures will be better than previously reported.

Methodology/Principal Findings

Of all patients started on ART over a three year period in Mzuzu Central Hospital, North Region, Malawi, those who transferred out were identified from the ART register and master cards. Clinic staff attempted to trace these patients to determine whether they had transferred in to a new ART facility and their outcome status. There were 805 patients (19% of the total cohort) who transferred out, of whom 737 (92%) were traced as having transferred in to a new ART facility, with a median time of 1.3 months between transferring-out and transferring-in. Survival probability was superior and deaths were lower in the transfer-out patients compared with those who did not transfer.

Conclusion/Significance

In Mzuzu Central Hospital, patients who transfer-out constitute a large proportion of patients not retained on ART at their original clinic of registration. Good documentation of transfer-outs and transfer-ins are needed to keep track of national outcomes. Furthermore, the current practice of regarding transfer-outs as being double counted in national cohorts and subtracting this number from the total national registrations to get the number of new patients started on ART is correct.  相似文献   

20.

Background and Aims

The stigma, a structure which serves as a site for pollen receipt and germination, has been assumed to have evolved once, as a modification of carpels, in early angiosperms. Here it is shown that a functional stigma has evolved secondarily from modified tepals in some Albuca species (Hyacinthaceae).

Methods

Deposition of pollen on Albuca floral organs by bees was recorded. Pollen germination and fruit set was measured in flowers that had pollen deposited solely on their tepals or had their tepal tips experimentally isolated or removed after pollination.

Key Results

Leafcutter bees deposit pollen onto the papillate apices of the inner tepals of Albuca flowers. Pollen germinates in tepal-derived fluid secreted 2 or 3 d after anthesis and pollen tubes subsequently penetrate the style during flower wilting. Application of cross-pollen to the inner tepal apices of A. setosa flowers led to high fruit set. No fruits were produced in pollinated flowers in which the inner tepals were mechanically isolated or removed.

Conclusions

Pollen capture by tepals in the Albuca clade probably evolved in response to selection for floral morphology that maximizes the accuracy of pollen transfer. These findings show how pollination function can be transferred among floral organs, and shed light on how the original angiosperm stigma developed from sporophylls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号