共查询到20条相似文献,搜索用时 0 毫秒
1.
We have characterized alphoid repeat clones derived from a chromosome 8 library. These clones are specific for human chromosome 8, as demonstrated by use of a somatic cell hybrid mapping panel and by in situ hybridization. Hybridization of the clones to HindIII digests of human genomic DNA reveals a complex pattern of fragments ranging in size from 1.3 to greater than 20 kb. One clone, which corresponds in size to the most prevalent genomic HindIII fragment, appears to represent a major higher order repeat in the chromosome 8 centromere. The DNA sequence of this clone reveals a dimeric organization of alphoid monomers. Restriction analysis of two other clones indicates that they are derivatives of this same repeat unit. The chromosome 8 alphoid clones hybridize to EcoRI fragments of genomic DNA ranging up to 1000 kb in length and reveal a high degree of polymorphism between chromosomes. Distribution of higher order repeat units across the centromere was examined by two-dimensional gel electrophoresis. Repeat units of the same size class tended to cluster together in restricted regions of centromeric DNA. 相似文献
2.
Positional distributions of various dinucleotides in experimentally derived human nucleosome DNA sequences are analyzed. Nucleosome positioning in this species is found to depend largely on GG and CC dinucleotides periodically distributed along the nucleosome DNA sequence, with the period of 10.4 bases. The GG and CC dinucleotides oscillate counterphase, i.e., their respective preferred positions are shifted about a half-period from one another, as it was observed earlier for AA and TT dinucleotides. Other purine-purine and pyrimidine-pyrimidine dinucleotides (RR and YY) display the same periodical and counterphase pattern. The dominance of oscillating GG and CC dinucleotides in human nucleosomes and the contribution of AG(CT), GA(TC), and AA(TT) suggest a general nucleosome DNA sequence pattern - counterphase oscillation of RR and YY dinucleotides. AA and TT dinucleotides, commonly accepted as major players, are only weak contributors in the case of human nucleosomes. 相似文献
3.
4.
5.
6.
7.
8.
The Chinese hamster ovary (CHO) cell line xrs-5 is a radiation-sensitive mutant isolated from CHO-K1 cells. The radiation sensitivity is associated with a defect in DNA double-strand break rejoining. The DNA alkaline unwinding technique was used to measure the DNA single-strand breakage caused by gamma-rays in xrs-5 and CHO-K1 cells. Greater rates of DNA unwinding were found in xrs-5 cells as compared to CHO-K1. Independent measurement of DNA strand breakage by DNA filter elution or pulsed-field gel electrophoresis failed to show any difference between the two cell lines. The greater rate of unwinding in xrs-5 cells may reflect an alteration in chromosome structure. 相似文献
9.
10.
The chromatin of a mouse that is trisomic for part of chromosome 7 was investigated. Chromatin from trisomic tissue has a smaller average nucleosome DNA repeat length than chromatin from tissue taken from normal diploid littermates. DNA of the nucleosome cores is the same size in both normal and trisomic tissues. Not all of the nucleosome monomers have different repeat lengths. Normal and trisomic mouse kidney cells in tissue culture maintained their nucleosome repeat-length differences. 相似文献
11.
A random, unique DNA sequence has been isolated and assigned to human chromosome 8. This sequence (D8MGV1) recognizes two alleles that differ in size by 700 bp. 相似文献
12.
Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome
下载免费PDF全文

Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena. 相似文献
13.
Accumulation of low molecular weight DNA and changes in chromatin structure in HeLa cells treated with human fibroblast interferon 总被引:2,自引:0,他引:2
R J Suhadolnik Y Sawada J Gabriel N L Reichenbach E E Henderson 《The Journal of biological chemistry》1984,259(8):4764-4769
The addition of human fibroblast interferon (IFN-beta) (100 units/ml) at the S/G2 boundary of the cell cycle of synchronously grown HeLa cells is characterized by the accumulation of newly synthesized low molecular weight DNA and changes in chromatin assembly. In addition, there is a 3-fold stimulation in the incorporation of tracer amounts of [3H]thymidine, but not [3H] deoxyguanosine, into DNA and a 2-fold increase in the incorporation of [3H]dTTP into the DNA of isolated nuclei. Fluorescence-activated cell sorting by laser flow cytometry revealed that IFN-beta-treated cells were delayed in entering and passing through the S phase. The inhibition of proliferation of HeLa cells treated with IFN-beta is characterized by a 3-fold accumulation of newly synthesized DNA of Mr less than 56 X 10(6) compared to untreated cells as determined by alkaline sucrose gradient centrifugation. The newly synthesized DNA in IFN-beta-treated cells was replicative and not repair DNA. The observation that IFN-beta inhibits the processing of newly synthesized low molecular weight DNA into normal DNA might be explained by the intracellular accumulation of S-adenosylhomocysteine in IFN-beta-treated HeLa cells (de Ferra, F., and Baglioni, C. (1983) J. Biol. Chem. 258, 2118-2121) which could change the soluble ribonucleotide and deoxyribonucleotide pool and ultimately affect DNA processing. Interferon may also affect processing of DNA by interfering with normal chromatin assembly. Evidence for the effect of IFN-beta on chromatin assembly is provided; we have observed a more condensed structure in IFN-beta treated cells by circular dichroism spectroscopy. Simultaneous with the affect on chromatin assembly, there is a 70% decrease in poly(ADP-ribosylation) of either histone and/or non-histone proteins. The loss of coordination between the pool size for DNA synthesis, decreased postsynthetic modifications of chromatin, and normal chromatin formation may explain the inability of the cell to differentiate and to continue cell division. 相似文献
14.
15.
The influence of DNA double-strand break structure on end-joining in human cells 总被引:3,自引:2,他引:3
下载免费PDF全文

Julianne Smith Cline Baldeyron Isabelle De Oliveira Maria Sala-Trepat Dora Papadopoulo 《Nucleic acids research》2001,29(23):4783-4792
DNA end-joining is the major repair pathway for double-strand breaks (DSBs) in higher eukaryotes. To understand how DSB structure affects the end-joining process in human cells, we have examined the in vivo repair of linearized plasmids containing complementary as well as several different configurations of non-complementary DNA ends. Our results demonstrate that, while complementary and blunt termini display comparable levels of error-free rejoining, end-joining fidelity is decreased to varying extents among mismatched non-complementary ends. End structure also influences the kinetics of repair, accurately recircularized substrates for blunt and complementary termini being detected significantly earlier than for mismatched non-complementary ends. These results suggest that the end-joining process is composed of an early component, capable of efficiently repairing substrates requiring a single ligation event, and a late component, involved in the rejoining of complex substrates requiring multiple processing steps. Finally, these two types of repair events may have different genetic requirements as suggested by the finding that exposure of cells to wortmannin, a potent inhibitor of phosphatidylinositol 3-related kinases (PI 3-related kinases), blocks the repair of complex substrates while having little or no effect on those requiring a simple ligation event. 相似文献
16.
Olav Hungnes Knut Jønsrud Enok Tjøtta Bjørn Grinde 《Journal of molecular evolution》1993,37(2):198-203
The large number of sequenced clones of HIV-1 and related viruses made it possible to indicate conserved elements with potential regulatory or structural functions. Such analysis was combined with directed mutagenesis in order to investigate the importance of elements that may influence the initiation of plus-strand DNA synthesis. The main site for plus-strand initiation is a polypurine tract near the 3′ end of the viral RNA (the 3′ PPT). An exact copy of this PPT is located in the middle of the genome (the internal PPT). Upstream from the internal PPT there is an inverted repeat. Mutants designed to upset the internal PPT (i.e., purine to pyrimidine changes), as well as mutants designed to abolish the potential stem-loop formation (changes around the internal PPT or in the upstream inverted repeat) both resulted in viruses with a reduced ability to replicate. Upsetting the stem-loop formation was, however, less harmful than changing the polypurine nature of the PPT. Changing a conserved T on the 3′ side of the PPT to a C did not affect the phenotype. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992 相似文献
17.
We have confirmed the result that chicken beta-globin gene chromatin, which possesses the characteristics of active chromatin in erythroid cells, has shortened internucleosome spacings compared with bulk chromatin or that of the ovalbumin gene, which is inactive. To understand how the short (approximately 180-bp) nucleosome repeat arises specifically on beta-globin DNA, we have studied chromatin assembly of cloned chicken beta-globin DNA in a defined in vitro system. With chicken erythrocyte core histones and linker histone H5 as the only cellular components, a cloned 6.2-kb chicken beta-globin DNA fragment assembled into chromatin possessing a regular 180 +/- 5-bp repeat, very similar to what is observed in erythroid cells. A 2-kb DNA subfragment containing the beta A gene and promoter region, but lacking the downstream intergenic region between the beta A and epsilon genes, failed to generate a regular nucleosome array in vitro, suggesting that the intergenic region facilitates linker histone-induced nucleosome alignment. When the beta A gene was placed on a plasmid that contained a known chromatin-organizing signal, nucleosome alignment with a 180-bp periodicity was restored, whereas nucleosomes on flanking plasmid sequences possessed a 210-bp spacing periodicity. Our results suggest that the shortened 180-bp nucleosome spacing periodicity observed in erythroid cells is encoded in the beta-globin DNA sequence and that nucleosome alignment by linker histones is facilitated by sequences in the beta A-epsilon intergenic region. 相似文献
18.
19.
Mass-spectrometrical analysis of proteins encoded on chromosome 21 in human fetal brain 总被引:1,自引:0,他引:1
Summary. Overexpression of chromosome 21 genes is directly or indirectly responsible for the Down syndrome phenotype. In order to analyse
chromosome 21 gene products (Chr21Ps), we extracted proteins from fetal human brain cortex and applied an ultracentrifugal
and chromatographic prefractionation principle followed by two-dimensional gel electrophoresis (2-DE) and mass-spectrometrical
analysis using high-throughput automated MALDI-TOF/TOF. Nine Chr21Ps were identified: pyridoxal kinase; superoxide dismutase
[Cu/Zn] 1; carbonyl reductase 1; ES1 protein homolog, mitochondrial [Precursor]; cystathionine-beta-synthetase; T-complex
protein 1, theta subunit; cystatin B; 6-phosphofructokinase; glycinamide ribonucleotide synthetase. Mass-spectrometric characterisation
of Chr21Ps following separation in 2-DE gels is a useful tool for the analysis of these structures in brain, independent of
antibody availability and specificity. 相似文献