首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stricking differences were observed in the mechanism of interaction between staphylococcal serine proteinase and surface of human granulocytes or lymphocytes despite the fact that incubation of this enzyme with both types of cells leads to analogical decrease of proteinase activity. Interaction of proteinase with lymphocytes releases peptides smaller than these released spontaneously by non-treated lymphocytes or lymphocytes treated with DFP-proteinase. However, in supernatants of lymphocytes neither complex of proteinase with cell derived molecules nor changes of electrophoretic mobility of proteinase was found. Products of proteinase—lymphocyte reaction have a proliferative effect on intact lymphocytes, which is greater that the one of active proteinase. On the other hand granulocytes are resistant to proteinase and bind active proteinase as well as the DFP-proteinase in the receptor mediated way, followed by endocytosis with the affinity similar to the one in monocytes.  相似文献   

2.
3.
Direct bioluminescent ATP determination in platelets and erythrocytes involves the study of different parameters which are discussed here. Some parameters are linked to the bioluminescent reaction and to the analyte (ATP); others have regard to the biological matrix. The composition of bioluminescent reagents and the preparation and conservation of the ATP standard, also in the presence of excipients, are among the first given. Matrix problems involve cell characteristics related to age and form, lysis resistance and the possible formation of aggregates (platelets) that may inhibit the complete release of ATP. For these reasons we used the most efficient ATP release agent with the lowest inhibitory effect on luciferase. The data obtained correlate well with a bioluminescent method requiring extraction with ethanol/EDTA, and therefore more time, for ATP determination in platelets and erythrocytes.  相似文献   

4.
The activity of inosine triphosphate pyrophosphohydrolase (ITPH) in human erythrocytes was found to be 1.50 +/- 0.39 mumol of inosine triphosphate (ITP) hydrolysed x min-1 per g Hb, and no measurable amount of ITP was detected. When dipyridamole was added to the medium composed of adenosine, pyruvate and inorganic phosphate, ITPH activity was 1.18 +/- 0.41, and at the same time ITP accumulation was 0.61 +/- 0.31 mumol/g Hb. The negative correlation between ITPH activity and accumulation of ITP was r = -0.87 at P less than 0.001.  相似文献   

5.
RS21-C6, which is highly expressed in all vertebrate genomes and green plants, is proposed to have nucleoside triphosphate pyrophosphohydrolase activity. Here, we report the crystal structures of the core fragment of RS21-C6, named RSCUT, and the complex with the substrate 5-methyl dCTP. The refined structure of RSCUT consists mainly of alpha-helices and shows formation of a tightly associated tetramer. On the basis of the structure of the RSCUT-m5dCTP complex and the results of pyrophosphatase activity assays, several key residues involved in the substrate binding of RS21-C6 have been identified. Tetramer formation is shown to be required for substrate binding.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) carries a variety of host proteins in addition to virus-encoded structural proteins, both in its envelope and inside the viral particle. Previous studies have reported that the HIV-1 life-cycle is affected by such virus-associated host cell surface proteins. The nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), also known as CD39, is a plasma membrane-bound ectoenzyme that hydrolyzes extracellular ATP and ADP to AMP. It has been shown that CD39 inhibits platelet function, and is thus a critical thromboregulatory molecule. We demonstrate here that host-derived CD39 is acquired by both laboratory-adapted and clinical variants of HIV-1 produced in cellular reservoirs of the virus. Moreover, purified CD39-bearing virions, but not isogenic viruses lacking CD39, display strong ATPase and ADPase activities. It is of particular interest that virions bearing this cellular enzyme can inhibit ADP-induced platelet aggregation, an effect blocked by an NTPDase inhibitor. On the basis of published and the present data on the functionality of human cellular proteins embedded within HIV-1, it can be proposed that these proteins might contribute to some of the immunologic deficiencies seen in infected individuals.  相似文献   

7.
Over the last seven years our laboratory has focused on the determination of the structural aspects of nucleoside triphosphate diphosphohydrolases (NTPDases) using site-directed mutagenesis and computational comparative protein modeling to generate hypotheses and models for the hydrolytic site and enzymatic mechanism of the family of NTPDase nucleotidases. This review summarizes these studies utilizing NTPDase3 (also known as CD39L3 and HB6), an NTPDase family member that is intermediate in its characteristics between the more widely distributed and studied NTPDase1 (also known as CD39) and NTPDase2 (also known as CD39L1 and ecto-ATPase) enzymes. Relevant site-directed mutagenesis studies of other NTPDases are also discussed and compared to NTPDase3 results. It is anticipated that many of the results and conclusions reached via studies of NTPDase3 will be relevant to understanding the structure and enzymatic mechanism of all the cell-surface members of this family (NTPDase1–3, 8), and that understanding these NTPDase enzymes will aid in modulating the many varied processes under purinergic signaling control. This review also integrates the site-directed mutagenesis results with a recent 3-D structural model for the extracellular portion of NTPDases that helps explain the importance of the apyrase conserved regions (ACRs) of the NTPDases. Utilizing this model and published work from Dr Guidotti's laboratory concerning the importance and characteristics of the two transmembrane helices and their movements in response to substrate, we present a speculative cartoon model of the enzymatic mechanism of the membrane-bound NTPDases that integrates movements of the extracellular region required for catalysis with movements of the N- and C-terminal transmembrane helices that are important for control and modulation of enzyme activity.  相似文献   

8.
In human erythrocytes incubated with both naturally occurring purine nucleosides and with a variety of purine nucleoside analogs, ATP catabolism was accelerated and lactate accumulation was increased. Tubercidin was a particularly potent inducer of ATP catabolism. In cells incubated with tubercidin, the major route of adenylate metabolism was deamination, whereas in cells incubated with deoxyglucose, the major pathway was dephosphorylation.  相似文献   

9.
Selective separation of human peripheral platelets, granulocytes and lymphocytes was investigated by column liquid chromatography using methoxyethoxymethyl (MEM) bonded-phase columns (25 × 0.9 cm I.D.). Isotonic solutions containing mono- and disaccharides, methyl-α-d-pyranosides and a physiological saline at pH 7.4 were used as the mobile phase. Granulocytes and lymphocytes were separated on the MEM-Cellulofine GH-25 column by elution with 0.3 M d-mannose solution. The isolation of platelets and lymphocytes from human leukocyte-rich plasma was performed with a MEM-Sephadex G25 column and elution with 0.27 M sucrose solution. On the same column platelets could also be collected selectively by elution with 0.31 M methyl-α-d-mannoside at the high recovery of 100%. The isolated cells were viable for more than 90%.  相似文献   

10.
Summary Equilibrium binding of [3H]dipyridamole identified high-affinity (K i 10nm) binding sites on human erythrocytes (5×105 sites/cell) and on HeLa cells (5×106 sites/cell). The equilibration of dipyridamole with these sites on human erythrocytes was compatible with a second-order process which proceeded at 22°C with a rate constant of about 6×106 m –1 sec–1. Binding of dipyridamole to these sites correlated kinetically with the inhibition of the equilibrium exchange of 500 m uridine in these cells and was inhibited in a concentration-dependent manner by nucleosides and other inhibitors of nucleoside transport, such as nitrobenzylthioinosine, dilazep and lidoflazine, but not by hypoxanthine, which is not a substrate for the nucleoside transporter of human erythrocytes. The results indicate that the substrate binding site of the transporter is part of the high-affinity dipyridamole binding site. Bound [3H]dipyridamole became displaced from these sites on human erythrocytes by incubation with an excess of unlabeled dipyridamole or high concentrations of nucleosides and inhibitors of nucleoside transport, but neither by hypoxanthine nor sugars. Dissociation of [3H]dipyridamole behaved as a simple first-order process, but the rate constant was about one order of magnitude lower (about 3×10–3 sec–1) than anticipated for typical ligand-protein binding on the basis of the measured association rate and equilibrium constants. The reason for this discrepancy has not been resolved. No high-affinity dipyridamole binding sites were detected on Novikoff rat hepatoma cells, P388, L1210 and S49 mouse leukemia cells or Chinese hamster ovary cells, and their absence correlated with a greater resistance of nucleoside transport in these cells to inhibition by dipyridamole. All cells expressed considerable low affinity (K d>0.5 m) and nonspecific binding of dipyridamole.  相似文献   

11.
Deoxycytidylate deaminase isolated from normal human lymphocytes and from mononuclear leucocytes from patients with acute lymphoblastic leukemia, chronic lymphocytic leukemia and acute monocytic leukemia has been characterized in regard to the substrate, dAMP and the allosteric regulators dCTP and dTTP. The enzymes exhibited sigmoidal initial velocity versus dCMP concentration whereas in the presence of the activator, dCTP, Michaelis-Menten kinetics were obtained.At saturating substrate concentrations dTTP acted as an allosteric inhibitor of the enzyme isolated from non-stimulated as well as from stimulated lymphocytes. However, the enzymes isolated from the leukemic cells had lost the allosteric regulation by dTTP.At low substrate concentrations the competitive inhibitor, dAMP, activated all the enzymes. This activation was abolished in the presence of dCTP which indicates that dAMP might be involved in the regulation of dCMP deaminase activity and thus influence the dCTP and dTTP pools under physiological conditions.Abbreviations dCMP deaminase deoxycytidylate deaminase - PHA Phytohemagglutinin - ALL acute lymphoblastic leukemia - CLL chronic lymphocytic leukemia - AMOL acute monocytic leukemia - WBC white blood cells  相似文献   

12.
Nucleoside transport in sheep red cells is controlled by two allelomorphic genes, the gene for nucleoside transport deficiency (Nu I) being dominant to that for the functional presence of carrier-mediated nucleoside transport activity (Nu i). Sheep are also polymorphic with respect to their red-cell nucleoside phosphorylase (NP) activity, some having high activities and others low activities of this enzyme. The gene for high activity (NP H) is incompletely dominant to that for low activity (NP L). Inheritance data indicate that theNu locus is genetically linked to that for the B blood-group system and, in addition, exerts a pleiotropic effect on NP activity, Nu permeability stabilizing the heat-labileNP L gene product. Nu-permeable cells have a higher ATP content than Nu-impermeable red cells, and within the Nu-impermeable subgroup, NP deficiency causes a further reduction in red cell ATP concentration. It is concluded that the nucleoside inosine supplements glucose as a physiological energy substrate in sheep red cells.  相似文献   

13.
The purpose of the present study was to investigate whether alimentary zinc (Zn) deficiency affects the activities of the Zn metalloenzymes protein kinase C (pKC) and the phosphatidylinositol-specific phospholipase C (PLC) in force-fed Zn-deficient rats. The in vivo activity of pKC was determined by measuring the subcellular distribution of the enzyme between the cytosolic and the particulate fraction of erythrocytes, whereas the activity of PLC was measured indirectly through the concentration of its metabolite inositol-1,4,5-trisphosphate (IP3) in platelets and monocytes. For this purpose, 24 male Sprague-Dawley rats with an average live mass of 126 g were divided into 2 groups of 12 animals each. The Zn-deficient and the control rats received a semisynthetic casein diet with a Zn content of 1.2 and 24.1 ppm, respectively. All animals were fed the same amount of the diet (10.8 g dry matter [DM]/d and rat) four times daily by gastric tube. After 12 d, the depleted rats were in a state of severe Zn deficiency, as demonstrated by a 70% lower Zn concentration and a 66% reduction in the serum activity of alkaline phosphatase. The radioimmunologically determined concentration of IP3 was reduced by a significant 55% in the platelets of the Zn-deficient rats (8.4 pmol IP3/5·108) as compared with the control rats (18.8 pmol IP3/5·108), whereas the IP3 concentration in the monocytes was not affected by the alimentary Zn supply (1.4 vs 1.2 pmol IP3/106), nor was there any difference between the Zn-deficient and the control rats with regard to the radioenzymatically determined specific activity of pKC, either in the cytosolic fraction (32.7 vs 32.5 pmol P/min/mg protein) or in the particulate fraction (38.1 vs 36.5 pmol P/min/mg protein) of the erythrocytes.  相似文献   

14.
The characterization of monoamine oxidase (MAO) activity in lymphocytes and granulocytes was studied by using cells prepared from human blood. The specific activities of the enzyme towards beta-phenylethylamine (PEA), benzylamine (Bz), tyramine (TYR) and 5-hydroxytryptamine (5-HT) were found to be 5-times higher in lymphocytes than in granulocytes. The absence of the semicarbazide-sensitive amine oxidase (SSAO) was confirmed by the lack of effect of semicarbazide on the benzylamine oxidation. The presence of MAO-B was corroborated by the inhibition of PEA oxidation with nanomolar deprenyl concentrations and by inhibition of TYR oxidation with high clorgyline concentrations, as well as by the simple sigmoid curve obtained in both cases. These results, together with the substrate preferences, suggest that the MAO activity of human granulocytes and lymphocytes is predominantly of the B form. For each fraction the kinetic constants were determined towards PEA, TYR and Bz as substrates. The Km values were similar for both cellular samples, whereas the Vmax values were higher in lymphocytes than in granulocytes. MAO-B was titrated with [3H]pargyline in order to find out the number of active sites. The corresponding molecular concentration, Kcat values and turnover number showed the presence of related enzymes in human granulocytes and lymphocytes.  相似文献   

15.
In many cases, understanding species’ responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.  相似文献   

16.
Sulfur mustard is a waemical warfare blistering agent for which neither the mechanism of action nor an antidote is known. Papirmeister et al. (1985) have postulated a biochemical hypothesis for mustard-induced cutaneous injury involving a sequelae of DNA alkylation, metabolic disruption and activation of protease. Human peripheral blood lymphocytes in cell cultures were employed as an in vitro model for alkylating agent toxicity. A chromogenic peptide substrate assay was used for detection of protease in lymphocytes treated with sulfur mustard or chloroethyl ethyl sulfide. Exposure of human peripheral blood lymphocytes from normal donors to these alkylating agents resulted in an increase in cell associated protease activity. This increase in protease activity may contribute to the pathology or act as an indicator to predict methods of therapeutic intervention for sulfur mustard toxicity.Abbreviations PBL peripheral blood lymphocytes - CEES chloroethyl ethyl sulfide - DFP diisopropyl fluoro-phosphate - pNA p-nitroaniline - CPSPA Chromogenic Peptide Substrate Protease Assay The opinions or assertions herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.  相似文献   

17.
The thermal induction of chemiluminescence of luminol-horseradish peroxidase-labeled erythrocytes from pigs, rats, and man was studied. The luminescent responses of rat, porcine, and human erythrocytes to heating were linear in respect to logs of counts per minute versus temperature. Landrace-Duroc crossbred pigs with a history of malignant hyperthermia (porcine stress syndrome) and Poland-China-miniature pigs inbred for malignant hyperthermia (MH) yielded erythrocytes with high-level thermochemiluminescence (TCL). Sprague-Dawley rat erythrocytes were intermediate in their production of TCL. Normal human and MH-resistant miniature swine erythrocytes produced low-level TCL. However, pretreatment of human erythrocytes with 1-chloro-2,4-dinitrobenzene (CDNB) resulted in high-level TCL. Furthermore, halothane enhanced the TCL of CDNB-treated human erythrocytes and Landrace-Duroc porcine erythrocytes that were not treated with CDNB. Red blood cells from pigs susceptible to the porcine stress syndrome demonstrated a TCL response very similar to CDNB-treated erythrocytes.  相似文献   

18.
Nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) is a cell surface, membrane-bound enzyme that hydrolyzes extracellular nucleotides, thereby modulating purinergic signaling. An alternatively spliced variant of NTPDase3 was obtained and analyzed. This alternatively spliced variant, termed "NTPDase3beta", is produced through the use of an alternative terminal exon (exon 11) in place of the terminal exon (exon 12) in the full-length NTPDase3, now termed "NTPDase3alpha". This results in an expressed protein lacking the C-terminal cytoplasmic sequence, the C-terminal transmembrane helix, and apyrase conserved region 5. The cDNA encoding this truncated splice variant was detected in a human lung library by PCR. Like the full-length NTPDase3alpha, the alternatively spliced NTPDase3beta was expressed in COS cells after transfection, but only the full-length NTPDase3alpha is enzymatically active and properly trafficked to the plasma membrane. However, when the truncated NTPDase3beta was co-transfected with full-length NTPDase3alpha, there was a significant reduction in the amount of NTPDase3alpha that was properly processed and trafficked to the plasma membrane as active enzyme, indicating that the truncated form interferes with normal biosynthetic processing of the full-length enzyme. This suggests a role for the NTPDase3beta variant in the regulation of NTPDase3 nucleotidase activity, and therefore the control of purinergic signaling, in those cells and tissues expressing both NTPDase3alpha and NTPDase3beta.  相似文献   

19.
Summary The phosphate self-exchange flux in resealed erythrocyte ghosts and in amphotericin B (5.5 m) permeabilized erythrocytes has been studied. The phosphate self-exchange flux exhibits an S-shaped concentration dependence and a self-inhibition in permeabilized red cells while in erythrocyte ghosts no self-inhibition of the phosphate flux has been observed. The apparent halfsaturation constants and the apparent Hill coefficients were assessed by the double reciprocal Hill plots of versus 1/[P] n . The phosphate half-saturation constants amount to approx. 125mm in ghosts and to about 75mm in permeabilized cells while the apparent Hill coefficients amount to 1.15 and to 1.65 (pH 7.2, 25°C), respectively. Both chloride and sulfate elicit a mixed-type inhibition of the phosphate self-exchange flux. In permeabilized cells, chloride and sulfate shift the flux optimum towards higher phosphate concentrations and reduce the apparent Hill coefficients. In erythrocyte ghosts, the apparent Hill coefficients are insensitive to these anions. The double reciprocal Hill plots indicate a mixed-type inhibition of the phosphate self-exchange flux by DNDS, salicylate and dipyridamole and a noncompetitive inhibition of the phosphate self-exchange flux by phlorhizin. By contrast, the Hill-Dixon plots for chloride and sulfate indicate a competitive inhibition of the phosphate self-exchange flux in erythrocyte ghosts and a mixed-type inhibition in permeabilized cells and provide Hill coefficients of greater than unity for chloride and sulfate. The Dixon plots for DNDS, salicylate, phlorhizin and dipyridamole show a noncompetitive inhibition of the phosphate flux and provide apparent Hill coefficients of 0.95–1.0 for inhibitor binding. Using the Debye-Hückel theory, the effects of ionic strength upon phosphate transport and inhibitor binding can be eliminated. The results of our studies provide strong evidence for the assumption that electrostatic forces are involved in phosphate transport and in inhibitor binding.  相似文献   

20.
Carbonic anhydrase (CA) is an important metabolic enzyme family closely related to many physiological and pathological processes. Currently, carbonic anhydrase inhibitors are the target molecules in the treatment and diagnosis of many diseases. In present study, we investigated the inhibitory effects of some indazole molecules on the CA‐I and CA‐II isoenzymes isolated from human erythrocytes. We showed that human CA‐I and CA‐II activities were reduced by of some indazoles at low concentrations. IC50 values, Ki constants, and inhibition types for each indazole molecule were determined. The indazoles showed Ki constants in a range of 0.383 ± 0.021 to 2.317 ± 0.644 mM, 0.409 ± 0.083 to 3.030 ± 0.711 mM against CA‐I and CA‐II, respectively. Each indazole molecule exhibited a noncompetitive inhibition effect. Bromine‐ and chlorine‐bonded indazoles were found to be more potent inhibitory effects on carbonic anhydrase isoenzymes. In conclusion, we conclude that these results may be useful in the synthesis of carbonic anhydrase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号