首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

2.
A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.  相似文献   

3.
The expression of several functional properties of the products of the bfe and tonB genes in Escherichia coli was measured after the specific termination of the synthesis of the products of these genes. This was accomplished by the use of a temperature-sensitive amber suppressor mutation, which allowed control, by manipulation of the growth temperature, of the level of product formed from suppressible mutant alleles of the bfe or tonB gene. The bfe product is an outer membrane receptor protein for vitamin B12, the E-colicins, and bacteriophage BF23. The identity of the tonB product is unknown, but it is necessary for a subsequent step of uptake of vitamin B12, iron chelates, all of the group B colicins, and bacteriophages T1 and phi 80. Results from a different experimental system had shown that the termination of expression of the bfe locus was rapidly followed by loss of sensitivity to colicins E2 and E3 and, subsequently, to bacteriophage BF23. This was confirmed with this experimental system. Receptors that were no longer functional for colicin or phage uptake remained fully effective for B12 uptake, showing that receptors are stable on the cell surface. This supports previous contentions for the presence of different functional states for colicin receptors. The functional properties of the tonB product, measured by B12 uptake or sensitivity to the group B colicin D, were unstable, declining extensively after cessation of its synthesis.  相似文献   

4.
Proteins in the outer membrane of gram-negative bacteria serve as general porins or as receptors for specific nutrient transport systems. Many of these proteins are also used as receptors initiating the processes of colicin or phage binding and uptake. The functional activities of several outer membrane proteins in Escherichia coli K-12 were followed after cessation or repression of their synthesis. Cessation of receptor synthesis was accomplished with a thermolabile suppressor activity acting on amber mutations in btuB (encoding the receptor for vitamin B(12), the E colicins, and phage BF23) and in fepA (encoding the receptor for ferric enterochelin and colicins B and D). After cessation of receptor synthesis, cells rapidly became insensitive to the colicins using that receptor. Treatment with spectinomycin or rifampin blocked appearance of insensitive cells and even increased susceptibility to colicin E1. Insensitivity to phage BF23 appeared only after a lag of about one division time, and the receptors remained functional for B(12) uptake throughout. Therefore, possession of receptor is insufficient for colicin sensitivity, and some interaction of receptor with subsequent uptake components is indicated. Another example of physiological alteration of colicin sensitivity is the protection against many of the tonB-dependent colicins afforded by provision of iron-supplying siderophores. The rate of acquisition of this nonspecific protection was found to be consistent with the repression of receptor synthesis, rather than through direct and immediate effects on the tonB product or other components of colicin uptake or action.  相似文献   

5.
The first step in the transport of cyanocobalamin (CN-B(12)) by cells of Escherichia coli was shown previously to consist of binding of the B(12) to specific receptor sites located on the outer membrane of the cell envelope. In this paper, evidence is presented that these B(12) receptor sites also function as the receptors for the E colicins, and that there is competition between B(12) and the E colicins for occupancy of these sites. The cell strains used were E. coli KBT001, a methionine/B(12) auxotroph, and B(12) transport mutants derived from strain KBT001. Colicins E1 and E3 inhibited binding of B(12) to the outer membrane B(12) receptor sites, and CN-B(12) protected cells against these colicins. Half-maximal protection was given by CN-B(12) concentrations in the range of 1 to 6 nM, depending upon the colicin concentration used. Colicin E1 competitively inhibited the binding of (57)Co-labeled CN-B(12) to isolated outer membrane particles. Functional colicin E receptor sites were found in cell envelopes from cells of only those strains that possessed intact B(12) receptors. Colicin K did not inhibit the binding of B(12) to the outer membrane receptor sites, and no evidence was found for any identity between the B(12) and colicin K receptors. However, both colicin K and colicin E1 inhibited the secondary phase of B(12) transport, which is believed to consist of the energy-coupled movement of B(12) across the inner membrane.  相似文献   

6.
The activity in vitro of four types of colicins (A, E1, E3, U) against one human standard fibroblast line and against 11 human tumor-cell lines carrying defined mutations of the p53 gene was quantified by MTT (tetrazolium bromide) assay. Flow cytometry showed that the pore-forming colicins A, E1 and U affected the cell cycle of 5 of these cell lines. Colicins E3 and U did not show any distinct inhibitory effects on the cell lines, while colicins E1 and especially A inhibited the growth of all of them (with one exception concerning colicin E1). Colicin E1 inhibited the growth of the tumor lines by 17-40% and standard fibroblasts MRC5 by 11%. Colicin A exhibited a differentiated 16-56% inhibition, the growth of standard fibroblasts being inhibited by 36%. In three of the lines, colicins A and E1 increased the number of cells in the G1 phase (by 12-58%) and in apoptosis (by 7-58%). These results correlated with the data from sensitivity assays. Hence, the inhibitory effect of colicins on eukaryotic cells in cell-selective, colicin-specific and can be considered to be cytotoxic.  相似文献   

7.
Escherichia coli B, induced for beta-galactoside permease, can accumulate thio-methyl-beta-galactoside in the cell even at 0 degrees D. At this temperature, cells adsorb colicin K but the adsorbed colicin does not inhibit thiomethyl-beta-galactoside uptake. Inhibition by colicin K is, however, seen at 0 degrees C after exposure of the colicin K-cell complex to a high temperature: a greater degree of inhibition occurs with increasing temperature or duration or exposure. There is a transition point at around 21 degrees C in Arrhenius plots of this colicin K activation reaction. If inhibitors of energy yielding reactions are present during the heat treatment, the inhibitory action of colicin K (as measured by thiomethyl-beta-galactoside uptake after returning the colicin K-cell complex to 0 degrees C and removal of the inhibitors) is prevented. These results indicate that adsorbed colicin K is converted into the active state only in the presence of metabolic energy and that cell surface fluidity appears to be concerned in this process.  相似文献   

8.
Growth of Escherichia coli K-12 strains in the presence of the vitamin cyanocobalamin (B12) resulted in an 80 to 90% reduction in B12 uptake activity of washed cells. Coincident with the decline in uptake activity was the depression of B12-binding activity in energy-poisoned cells, suggesting that growth in B12 resulted in the repression of synthesis of the B12 receptor protein in the outer membrane. Growth in the presence of B12 led to marked reduction in sensitivity to the E colicins, whose adsorption to cells requires the B12 receptor, and to a decrease in the amount of a band on electropherograms of outer membrane proteins. That polypeptide was also missing from mutants altered at btuB, the locus encoding the B12 receptor. Addition of B12 to growing cultures resulted in the exponential decline in specific activity of B12 uptake, as expected for dilution of functional receptors by further growth. Repression of receptor synthesis appears to be regulated by the level of intracellular, rather than extracellular, B12 and is separate from the regulation of the methionine biosynthetic pathway. Mutants altered in btuC, which are defective in accumulation and retention of B12, exhibit a much lower degree of repressibility.  相似文献   

9.
Phototrophic growth of the moderate halotolerant Rhodobacter capsulatus strain E1F1 in media containing up to 0.3 M NaCl was dependent on the nitrogen source used. In these media, increased growth rates and growth levels were observed in the presence of reduced nitrogen sources such as ammonium and amino acids. When the medium contained an oxidized nitrogen source (dinitrogen or nitrate), increases in salinity severely inhibited phototrophic growth. However, the addition of glycine betaine promoted halotolerance and allowed the cells to grow in 0.2 M NaCl. Inhibition of diazotrophic growth by salinity was due to a decrease in nitrogenase activity which was no longer synthesized and reversibly inactivated, both effects being alleviated by the addition of glycine betaine. In R. capsulatus E1F1, inhibition of cell growth in nitrate by salt was due to a rapid inhibition of nitrate uptake, which led to a long-term decrease in nitrate reductase activity, probably caused by repression of the enzyme. Addition of glycine betaine immediately restored nitrate uptake, but the recovery of nitrate reductase activity required several hours. Neither ammonium uptake nor ammonium assimilation through the glutamine synthetase-glutamate synthase pathway was affected by NaCl.  相似文献   

10.
11.
An outer membrane preparation from cells of Escherichia coli K-12 grown in low iron medium was found to retain ferric enterobactin binding activity following solubilization in a Tris-HCl, Na2EDTA buffer containing Triton X-100. Activity was measured by means of a DEAE-cellulose column which separated free and receptor bound ferric enterobactin. The binding activity was greatly reduced in preparations obtained from cells grown in iron rich media or from cells of a colicin B resistant mutant grown in either high or low iron media. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis enabled correlation of this lack of activity to a single band missing in the outer membrane profile of the colicin B mutant. Evidence was obtained for in vitro competition between ferric enterobactin and colicin B for the extracted receptor. The binding specificity of the extracted receptor was examined by competition between ferric enterobactin and several iron chelates including a carbocyclic analogue of enterobactin, cis-1,5,9-tris(2,3-dihydroxybenzamido)cyclododecane. The ferric form of the latter compound supported growth of siderophore auxotrophs, apparently without hydrolysis to dihydroxybenzoic acid and resynthesis into enterobactin. These data may require revision of the accepted mechanism of enterobactin mediated iron utilization.  相似文献   

12.
The fluorescent probe, 8-anilino-1-napthalenesulfonate (ANS) binds to Escherichia coli, showing an enhanced fluorescence. The interaction of colicin E1 with sensitive cells causes an increase of about 100% in the fluorescence of the bound ANS, and this change at equilibrium has an apparent "all-or-none" nature as a function of E1 multiplicity. Approximately 6 to 8% of the ANS is bound to the cells at equilibrium. The colicin E1-induced fluorescence increase can be attributed partly to an increase in ANS binding and partly to an increase in the fluorescence yield of the bound ANS. The kinetics of the E1-induced fluorescence increase in sensitive cells are very similar to those of the adenosine triphosphate decrease. The phosphorylation uncoupler p-trifluoromethoxy-carbonylcyanidephenylhydrazone also causes a large change in the fluorescence of bound ANS. Colicin E2 or E3 does not cause any fluorescence change, nor does colicin E1 cause fluorescence change with a colicinogenic strain. ANS appears to be a probe of structural or conformational change in the cell envelope that is closely associated with the colicin E1-induced adenosine triphosphate decrease.  相似文献   

13.
Escherichia coli B, induced for β-galactoside permease, can accumulate thiomethyl-β-galactoside in the cell even at 0 °C. At this temperature, cells adsorb colicin K but the adsorbed colicin does not inhibit thiomethyl-β-galactoside uptake. Inhibition by colicin K is, however, seen at 0 °C after exposure of the colicin K-cell complex to a high temperature: a greater degree of inhibition occurs with increasing temperature or duration of exposure. There is a transition point at around 21 °C in Arrhenius plots of this colicin K activation reaction.If inhibitors of energy yielding reactions are present during the heat treatment, the inhibitory action of colicin K (as measured by thiomethyl-β-galactoside uptake after returning the colicin K-cell complex to 0 °C and removal of the inhibitors) is prevented.These results indicate that adsorbed colicin K is converted into the active state only in the presence of metabolic energy and that cell surface fluidity appears to be concerned in this process.  相似文献   

14.
A fraction containing a variety of low molecular weight substances was extracted into 80% aqueous acetone from both a colicin E2-treated cell culture of Escherichia coli and an untreated one. The extract was divided into five fractions by Sephadex G15 chromatography. One of them, Fraction B, was separated into three subfractions by Sephadex G10 chromatography. Two subfractions, Fraction BI and Fraction BII, were further fractionated by several chromatographic systems. DNA was incubated with an aliquot from each of these fractions and was then analyzed by sedimentation in an alkaline sucrose density gradient. The activity which caused a decrease in the sedimentation coefficient of the DNA was found in some of these fractions. The activity from colicin E2-treated cells was compared with that from untreated ones. It was revealed that colicin E2 induces some increases in the activity toward DNA in one of the subfractions, Fraction BI, and also causes the appearance of a new species in another fraction, Fraction BII, which potentiates the activity in Fraction BI. These colicin E2-induced changes appeared at 5 min after the addition of colicin E2. The possible significance of such reactions for the action of colicin E2 are discussed.  相似文献   

15.
Recent reports demonstrated that the energy-dependent step of vitamin B12 uptake into cells of Escherichia coli rapidly declines after cessation either of the expression of the tonB gene or of general protein synthesis. It is shown here that inhibition of protein synthesis results in the decline, with similar kinetics, of all tonB-dependent processes, including sensitivity to colicins B and Ia, irreversible adsorption of phage phi80, and siderophore-mediated iron uptake. The role of ongoing TonB-dependent reactions on this lability of TonB function was investigated. Ferrichrome and the enterochelin precursor, 2,3-dihydroxybenzoate, caused both a moderate depression of B12 uptake activity in growing cells (reversed upon removal of the siderophore) and an acceleration of the loss of activity following inhibition of protein synthesis by addition of spectinomycin. Strains lacking the tonB-dependent siderophore uptake systems did not show these responses. The results suggest the consumption of tonB product during its action.  相似文献   

16.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

17.
Comparative Study of the Events Associated with Colicin Induction   总被引:39,自引:22,他引:17       下载免费PDF全文
Colicinogenic factors ColI and ColV, which have been shown to behave as sex factors, could not be induced with mitomycin C. In contrast, the ColE(1), ColE(2), and ColE(3) factors, which do not exhibit any fertility factor characteristics, are inducible by this agent. The induced production of colicins E(1), E(2), and E(3) was accompanied by a loss in viability at a concentration of mitomycin C which was bacteriostatic to noncolicinogenic cells or to cells carrying the ColV or ColI factors. The loss in viability accompanying the mitomycin C induction of the ColE(1), ColE(2), or ColE(3) factors also occurred when colicin synthesis was blocked by chloramphenicol or amino acid starvation. However, chloramphenicol was able to block the loss of viability of a recipient cell after mitomycin C induction of a newly acquired Col factor if the antibiotic was present throughout the mating period. No detectable internal colicin or colicin precursor could be demonstrated during the lag period prior to the appearance of colicin outside the cell 20 to 30 min after the addition of mitomycin C. If chloramphenicol was present during the lag period following the addition of mitomycin C, colicin synthesis began immediately after the removal of these antibiotics. The synthesis of tryptophan synthetase and induced beta-galactosidase proceeded normally throughout the lag period and well into the period of colicin production. Regulation of beta-galactosidase synthesis did not seem to be profoundly affected during the lag period subsequent to mitomycin C addition. Induced colicin synthesis, like bacterial or induced prophage protein synthesis, was subject to inhibition by virulent phage infection.  相似文献   

18.
Several human T cell derived factors capable of stimulating human B cells to synthesize DNA have been previously described. One such factor exhibits an apparent m.w. of 50,000 Da and has been termed 50-kDa-B cell growth factor (BCGF). In this report, we show that a human B cell proliferation pathway based on the sequential action of anti-mu antibody, 50-kDa-BCGF and IL-2 is inhibited in the presence of human rIL-4. Although IL-4 itself is capable of triggering B cell DNA synthesis as measured at 72 h, this lymphokine inhibits, in a dose-related manner, the 50-kDa-BCGF driven response of B cells to IL-2 when such proliferation is determined after 144 h. This inhibition takes place at an early step of the B cell activation and does not require the presence of IL-4 during the whole culture period. Such inhibitory activity of IL-4 is specific to the IL-2-induced B cell proliferation because DNA synthesis measured in the presence of semi-purified human 12-kDa-BCGF is not affected by the presence of IL-4. Our results suggest that a particular pathway of human B cell activation leading to the proliferation of these cells in the presence of IL-2 could be either up- or down-modulated by 50-kDa-BCGF and IL-4, respectively.  相似文献   

19.
Growth of E. coli K-12 under severe iron stress results in increased production of the outer membrane receptors for colicins B, D, Ib and M. The increase in colicin receptor activity coincides with the appearance of large amounts of two high molecular weight proteins in the outer membrane of the cells. These proteins are identified as the outer membrane receptors for colicins B and D and for colicin M. Mutants lacking a functional outer membrane receptor for colicins B and D are defective in the uptake of iron complexed with the siderochrome enterochelin, and are thus comparable with tonA mutants which lack a functional receptor for colicin M and are defective in the uptake of iron complexed with ferrichrome (6). The colicin B and D receptor may therefore function in the uptake of ferri-enterochelin.  相似文献   

20.
The role of major histocompatibility complex-encoded class I molecules in the proliferation of human B lymphocytes is presently unclear. This question was addressed by investigating the effect of three individually derived anti-HLA class I monoclonal antibodies (mAb) on purified human B cells (less than 1.5% T cells) stimulated by either the T-independent mitogen Staphylococcus aureus or the phorbol ester, phorbol-12-myristate-13-acetate. The three anti-HLA class I antibodies, whether specific for gene products of the HLA-A locus (mAb 131), HLA-B locus (mAb 4E), or HLA-A, -B, and -C locus (mAb W6/32), inhibited S. aureus-induced proliferation by 70 to 90%. This inhibition was significant over a 5-day culture period, was not altered by the addition of exogenous interleukin 2 or B cell growth factor, and was not due to nonspecific cytotoxicity. In addition, the inhibition of proliferation was unchanged when the mAb were added 12 hr after the initiation of culture. The proliferative response was not affected by either of the control antibodies OKB7 and R3-367. In contrast with S. aureus-stimulated B cells, phorbol-12-myristate-13-acetate-induced proliferation was resistant to the inhibitory activity of HLA class I-specific antibodies. These results suggest that HLA class I molecules are involved in human B lymphocyte proliferation and may regulate a critical event preceding the upregulation of protein kinase C activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号