首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balanced complex chromosome rearrangements (CCR) are extremely rare in humans. They are usually ascertained either by abnormal phenotype or reproductive failure in carriers. These abnormalities are attributed to disruption of genes at the breakpoints, position effect or cryptic imbalances in the genome. However, little is known about possible imbalances at the junction points. We report here a patient with a CCR involving three chromosomes (2;10;11) and eight breakpoints. The patient presented with behavioural problems as the sole phenotypic abnormality. The rearrangement, which is apparently balanced in G-banding and multicolour FISH, was shown by genomic array analysis to include a deletion of 0.15–1.5 Mb associated with one of the breakpoints. To explain the formation of this rearrangement through the smallest possible number of breakage-and-reunion events, one has to assume that the breaks have not occurred simultaneously, but in a temporal order within the span of a single cell division. We demonstrate that array comparative genomic hybridisation (CGH) is a useful complementary tool to cytogenetic analysis for detecting and mapping cryptic imbalances associated with chromosome rearrangement.  相似文献   

2.
Complex chromosomal rearrangements are very rare chromosomal abnormalities. Individuals with a complex chromosomal rearrangement can be phenotypically normal or display a clinical abnormality. It is believed that these abnormalities are due to either microdeletions or microduplications at the translocation breakpoints or as a result of disruption of the genes located in the breakpoints. In this study we describe a 2-year-old child with mental retardation and developmental delay in whom a de novo apparently balanced exceptional complex chromosomal rearrangement was found through conventional cytogenetic analysis. Using both cytogenetic and FISH analysis, the patient's karyotype was found to be: 46,XY,der(5)t(5;7)(p15.1;7q34),t(5;8)(q13.1;8q24.1)dn. A large, clinically significant deletion which encompassed 887.69 kb was detected at the 5q12.1–5q12.3 (chr5:62.886.523–63.774.210) genomic region using array-CGH. This deleted region includes the HTR1A and RNF180 genes. This is the first report of an individual with an apparently balanced complex chromosomal rearrangement in conjunction with a microdeletion at 5q12.1–5q12.3 in which there are both mental-motor retardation and dysmorphia.  相似文献   

3.
Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than two chromosomes with at least three breakpoints. CCRs can be divided into familial and de novo. Balanced CCR are extremely rare in humans and are at high risk of producing unbalanced gametes. Individuals with balanced CCR are usually phenotipically normal but report fertility problems, recurrent miscarriages or congenital anomalies in newborn offsprings as consequence of either meiotic failure or imbalanced chromosomes segregation.We describe the case of an unbalanced CCR involving chromosomes 1, 4 and 8 found in a girl with developmental delay, hexadactilia and microcephaly. The rearrangement, apparently balanced at a standard karyotype analysis and of maternal origin, was demonstrated to be unbalanced by array-CGH and FISH. In conclusion our study underlines the importance of the combined use of a quantitative technique, as array-CGH, to detect criptic segmental aneuploidies, and a qualitative tool, as FISH analysis, to physically map the localization of the chromosome segments involved, in order to realize the exact nature that underlies a chromosomal rearrangement.  相似文献   

4.
We report on a 29-year-old woman with a history of five spontaneous abortions and a balanced complex chromosome rearrangement (CCR) involving break points between chromosomes 8, 11, and 12. Fluorescence in situ hybridisation (FISH) in combination with giemsa trypsin banding techniques were essential for the identification of the breakpoints. In addition, the results were confirmed by 24-colour FISH using the spectral karyotyping system (SKY). The karyotype was 46,XX,t(8;11;12)(8qter-->8p10::12p10-->12pter;11pter--> 11q14::8p10-->8pter;12qter-->12p10::11q14-->11qter). Application of SKY facilitated detection of all three chromosomes involved and supported the localisation of the breakpoints by a single time and sample saving investigation.  相似文献   

5.
Cytogenetic analyses of constitutional diseases have disclosed several chromosomal rearrangements. At the molecular level, these rearrangements often result in the breakage of genes or alteration of genome architecture. Fluorescence in situ hybridization (FISH) and molecular investigations of a patient showing hypotonia and dysmorphic traits revealed a masked complex chromosome abnormality previously detected by G-banding as a simple 8qter deletion. To characterize the genetic rearrangements panels of bacterial artificial chromosomes (BACs) covering 8q24.22-->qter were constructed, and short tandem repeats (STRs) were used to refine the localization of the breakpoints and to assess the parental origin of the defect. Chromosome 8 displayed the breakpoint at 8q24.22 and an unexpected distal breakpoint at 8q24.23 resulting in unbalanced translocation of a small 8q genomic region on the chromosome 16qter. The study of the 16qter region revealed that the 16q subtelomere was retained and the translocated material of distal 8q was juxtaposed. Moreover, molecular analyses showed that part of the translocated 8qter segment on der(16) was partially duplicated, inverted and that the rearrangement arose in the paternal meiosis. These findings emphasize the complexity of some only apparently simple chromosomal rearrangements and suggest a subtelomeric FISH approach to enhance diagnostic care when a cytogenetic terminal deletion is found.  相似文献   

6.
We report on a currently six-year-old patient with a de novo complex chromosome rearrangement (CCR) involving chromosomes 2 and 12. A translocation 2;12 that appeared to be reciprocal after standard banding turned out to be a complex event with seven breaks after molecular cytogenetic analyses. Array CGH analysis showed no imbalances at the breakpoints but revealed an additional microdeletion of about 80 kb on chromosome 11. The same deletion was also present in the phenotypically normal father. The patient showed relatively mild mental retardation, defined mainly as impaired speech development (orofacial dyspraxia) and psychomotor retardation. In addition, mild dysmorphic facial features like hypertelorism, a prominent philtrum and down-turned corners of the mouth were observed. We narrowed down all breakpoint regions to about 100 kb, using a panel of mapped bacterial artificial chromosome (BAC) clones for fluorescence in situ hybridization (FISH). BACs spanning or flanking all seven breakpoints were identified and no chromosomal imbalances were found consistent with the array CGH results. Our investigations resulted in the following karyotype: 46,XY,t(2;12)(2pter-->2p25.3::2p23.3-->2p25.2::2p23.3-->2p14::2q14.3-->2p14::2q14.3-->2q14.3::12q 12-->12qter;12pter-->12q12::2p25.3-->2p25.2::2q14.3-->2qter).  相似文献   

7.
We report on a family in which a daughter is described with mental retardation, as well as malformations of the heart, and of the brain (Dandy-Walker variant). The patient's phenotype suggests a chromosomal rearrangement. However, her karyotype was unremarkable by conventional cytogenetic analysis. In order to detect chromosome rearrangements overseen by this method, the subtelomere regions of suspicious chromosomes were verified by fluorescence in situ hybridization (FISH). A rearranged derivative chromosome 6 was identified. Further examinations by FISH-microdissection (FISH-MD) revealed a maternal complex balanced translocation. The patient inherited the derivative chromosome 6 from her mother and therefore carries a partial monosomy 6q26-->qter and a partial trisomy 11q23.3-->qter.  相似文献   

8.
A de novo complex chromosomal rearrangement is very rare but likely to be present in a child with developmental disabilities and physical alterations. A child presented in this study showed global developmental delay and some typical phenotypes. Initial karyotyping and FISH analysis in the patient showed an apparently de novo balanced translocation between chromosome 3 and 8, t(3;8)(q13.1;q24.2). Further analysis using multiplex ligation-dependent probe amplification and array-based comparative genomic hybridization revealed a cryptic microdeletion on 3p13 region. Nearly one-third of balanced rearrangements are reported to involve cryptic disruptions at breakpoints, however, the microdeletion of the proposita was present in non-translocated region of the chromosome 3. After careful reevaluation of the results, a pericentric inversion, inv(3)(p13q13.1) that induced deletion was revealed. The clinical features of developmental delay in cognition, language, and motor function and facial and physical phenotype of the proposita were similar to those found in the children with 3p13 deletion. This case shows that combined molecular cytogenetic techniques with routine karyotyping are very useful to identify subtle genomic changes associated with abnormal phenotypes.  相似文献   

9.
Complex chromosome rearrangements (CCRs) are extremely rare but often associated with mental retardation, congenital anomalies, or recurrent spontaneous abortions. We report a de novo apparently balanced CCR involving chromosomes 3 and 12 and a two-way translocation between chromosomes 11 and 21 in a woman with mild intellectual disability, obesity, coarse facies, and apparent synophrys without other distinctive dysmorphia or congenital anomalies. Molecular analysis of breakpoints using fluorescence in situ hybridization (FISH) with region-specific BAC clones revealed a more complex character for the CCR. The rearrangement is a result of nine breaks and involves reciprocal translocation of terminal chromosome fragments 3p24.1→pter and 12q23.1→qter, insertion of four fragments of the long arm of chromosome 12: q14.1→q21?, q21?→q22, q22→q23.1, and q23.1→q23.1 and a region 3p22.3→p24.1 into chromosome 3q26.31. In addition, we detected a ~0.5-Mb submicroscopic deletion at 3q26.31. The deletion involves the chromosome region that has been previously associated with Cornelia de Lange syndrome (CdLS) in which a novel gene NAALADL2 has been mapped recently. Other potential genes responsible for intellectual deficiency disrupted as a result of patient’s chromosomal rearrangement map at 12q14.1 (TAFA2), 12q23.1 (METAP2), and 11p14.1 (BDNF).  相似文献   

10.
Summary A de novo and apparently balanced complex chromosome rearrangement (CCR) was found in monozygotic (MZ) twin infants with multiple congenital anomalies. The rearrangement involved 4 chromosomes with 6 breakpoints including 2p23, 2q13, 2q21.1, 3p23, 11q13.1, and 12q24.1. This seems to be the first report of a CCR in MZ twins. The relationship between this chromosome abnormality and MZ twinning is discussed.  相似文献   

11.
We report on a balanced complex chromosomal aberration detected in a fetus after amniocentesis. The pregnancy was achieved after intracytoplasmic sperm injection. GTG-banding revealed a complex structurally rearranged karyotype with a translocation between chromosomes 5 and 15 and an additional paracentric inversion in the der(15) between bands 5q11.2 and 5q15. Ag-NOR staining showed an interstitial active nuclear organizer region in the der(15). Molecular cytogenetic analyses using whole-chromosome-painting probes, comparative genomic hybridization, and multicolor banding did not point to further structural aberrations or imbalances. Therefore, a complex rearrangement with three breakpoints has occurred, and the karyotype can be described as 46,XX,der(5)t(5;15) (q11.2;p12),der(15)t(5;15)(q11.2;p12)inv(5)(q11.2q15).  相似文献   

12.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

13.
Supernumerary marker chromosomes (SMC) are heterogeneous group of chromosomes which are reported in variable phenotypes. Approximately 70% originate from acrocentric chromosomes. Here we report a couple with recurrent miscarriages and a SMC originating from an acrocentric chromosome. The cytogenetic analysis of the husband revealed a karyotype of 47,XY+marker whereas the wife had a normal karyotype. Analysis of SMC with C-banding showed the presence of a big centromere in the center and silver staining showed prominent satellites on both sides of the marker. Apparently, microarray analysis revealed a 2.1 Mb duplication of 15q11.2 region but molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) with whole chromosome paint (WCP) 15 showed that the SMC is not of chromosome 15 origin. Subsequently, FISH with centromere 22 identified the SMC to originate from chromosome 22 which was also confirmed by WCP 22. Additional dual FISH with centromere 22 and Acro-p-arm probes confirmed the centromere 22 and satellites on the SMC. Further fine mapping of the marker with Bacterial Artificial Chromosome (BAC) clones; two on chromosome 22 and four on chromosome 15 determined the marker to possess only centromere 22 sequences and that the duplication 15 exists directly on chromosome 15. In our study, we had identified and characterized a SMC showing inversion duplication 22(p11.1) combined with a direct tandem duplication of 15q11.2. The possible genotype–phenotype in relation with the two rearrangements is discussed.  相似文献   

14.
Constitutional Complex Chromosomal Rearrangements (CCRs) are very rare. While the vast majority of CCRs involve more than one chromosome, only seven cases describe CCRs with four or more breakpoints within a single chromosome. Here, we present a patient with multiple congenital anomalies and mental retardation. Array Comparative Genomic Hybridisation (array CGH), FISH and Multicolour Banding FISH revealed a de novo complex rearrangement with two deletions, a duplication and an inversion of 4q. This CCR involving at least seven breakpoints is one of the most complex rearrangements of a single chromosome reported thus far. Potential mechanisms generating such complex rearrangements are discussed.  相似文献   

15.
We report four cases of subjects with phenotypic abnormalities and mental retardation associated with apparently balanced translocations, two inherited and two de novo, which showed, by molecular analysis, a hidden complexity. All the cases have been analyzed with different molecular techniques, including array-CGH, and in two of them the translocation breakpoints have been defined at the level of base pairs via studies in somatic hybrids containing single derivative chromosomes. We demonstrated that all the translocations were in fact complex rearrangements and that an imbalance was present in three of them, thus accounting for the phenotypic abnormalities. In one case, a Prader–Willi subject, we were not able to determine the molecular cause of his phenotype. This study, while confirming previous data showing unexpected complexity in translocations, further underscores the need for molecular investigations before taking for granted an apparently simple cytogenetic interpretation.R. Ciccone and R. Giorda contributed equally to this work  相似文献   

16.
Complex chromosome rearrangements (CCR) involving multiple breaks in two or more chromosomes are rare. We describe a girl with development delay and overgrowth who presents a nine-break apparently balanced de novo rearrangement involving chromosomes 1, 2, 3, 4 and 12, and a boy with developmental delay and seizures with a complex three-chromosome apparently balanced de novo rearrangement involving chromosomes 2, 7 and 13. The relationship between clinical abnormalities and apparently balanced rearrangements is discussed.  相似文献   

17.
Chromosome translocations involving one donor chromosome and multiple recipient chromosomes have been referred to as jumping translocations (JTs). Acquired JTs are commonly observed in cancer patients, mainly involving chromosome 1. Constitutional forms of JTs mostly involve the acrocentric chromosomes and their satellites and have been reported in patients with clinical abnormalities. Recognizable phenotypes resulting from these events have included Down, Prader-Willi, and DiGeorge syndromes. The presence of JTs in spontaneous abortions has not been previously described. The breakpoints of all JTs occur in areas rich in repetitive DNA (telomeric, centromeric, and nucleolus organizing regions). We report two different unstable chromosome rearrangements in samples derived from spontaneous abortions. The first case involved a chromosome 15 donor. The recipient chromosomes were 1, 9, 15, and 21, and the respective breakpoints were in either the heterochromatic regions or the centromeres. FISH studies confirmed that the breakpoints of the jumping 15 rearrangement did not involve the Prader-Willi region but originated at the centromere or in the proximal short arm. A second case of instability was observed with a rearrangement resulting from a presumed de novo 8;21 translocation. Three JT cell lines were observed. They consisted of a deleted 8p chromosome, a dicentric 8;21 translocation, and an 8q isochromosome. The instability regions appeared to be at the pericentromeric region of chromosome 8 and the satellite region of chromosome 21. Both cases proved to be de novo events. The unstable nature of the JT resulting in chromosomal imbalance most likely contributed to the fetal loss. It appears that JT events may predispose to chromosomal imbalance via nondisjunction and chromosomal rearrangement and, therefore, may be an unrecognized cause of fetal loss.  相似文献   

18.
Karyotype analysis can provide clues to significant genes involved in the genesis and growth of pancreas cancer. The genome of pancreas cancer is complex, and G-band analysis cannot resolve many of the karyotypic abnormalities seen. We studied the karyotypes of 15 recently established cell lines using molecular cytogenetic tools. Comparative genomic hybridization (CGH) analysis of all 15 lines identified genomic gains of 3q, 8q, 11q, 17q, and chromosome 20 in nine or more cell lines. CGH confirmed frequent loss of chromosome 18, 17p, 6q, and 8p. 14/15 cell lines demonstrated loss of chromosome 18q, either by loss of a copy of chromosome 18 (n = 5), all of 18q (n = 7) or portions of 18q (n = 2). Multicolor FISH (Spectral Karyotyping, or SKY) of 11 lines identified many complex structural chromosomal aberrations. 93 structurally abnormal chromosomes were evaluated, for which SKY added new information to 67. Several potentially site-specific recurrent rearrangements were observed. Chromosome region 18q11.2 was recurrently involved in nine cell lines, including formation of derivative chromosomes 18 from a t(18;22) (three cell lines), t(17;18) (two cell lines), and t(12;18), t(15;18), t(18;20), and ins(6;18) (one cell line each). To further define the breakpoints involved on chromosome 18, YACs from the 18q11.2 region, spanning approximately 8 Mb, were used to perform targeted FISH analyses of these lines. We found significant heterogeneity in the breakpoints despite their G-band similarity, including multiple independent regions of loss proximal to the already identified loss of DPC4 at 18q21.  相似文献   

19.
A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2) from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases.  相似文献   

20.
Cerebellar hypoplasia, mild mental retardation, skeletal abnormalities, and ataxia were present in a 40 years old patient with a complex chromosome rearrangement (CCR). Chromosomes 2, 5, 16, and 17 were involved in the CCR. For the definition of the eight breakpoints leading to the rearrangement FISH with whole chromosomes paintings and specific telomeric probes was employed. Gene disruption, positional effect variegation, and sub-microscopic deletions are all possible causes for the abnormal phenotype observed in the patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号