首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

2.
The large (L) envelope protein of the hepatitis B virus (HBV) has the peculiar capacity to form two transmembrane topologies via an as yet uncharacterized process of partial post-translational translocation of its pre-S domain across membranes. In view of a current model that predicts an HBV-specific channel generated during virion envelope assembly to enable pre-S translocation, we have examined parameters influencing L topogenesis by using protease protection analysis of wild-type and mutant L proteins synthesized in transfected cells. We demonstrate that contrary to expectation, all determinants, thought to be responsible for channel formation, are dispensable for pre-S reorientation. In particular, we observed that this process does not require (i) the helper function of the HBV S (small) and M (middle) envelope proteins, (ii) covalent dimer formation of envelope chains, or (iii) either of the three amphipathic transmembrane segments of L. Rather, the most hydrophobic transmembrane segment 2 of L was identified as a vital topogenic determinant, essential and sufficient for post-translational pre-S translocation. Cell fractionation studies revealed that pre-S refolding and thus the dual topology of L is established at the endoplasmic reticulum (ER) membrane rather than at a post-ER compartment as originally supposed. Together our data provide evidence to suggest that the topological reorientation of L is facilitated by a host cell transmembrane transport machinery such as the ER translocon.  相似文献   

3.
V Bruss  K Vieluf 《Journal of virology》1995,69(11):6652-6657
The large hepatitis B virus (HBV) surface protein (L) forms two isomers which display their N-terminal pre-S domain at the internal and external side of the viral envelope, respectively. The external pre-S domain has been implicated in binding to a virus receptor. To investigate functions of the internal pre-S domain, a secretion signal sequence was fused to the N terminus of L (sigL), causing exclusive expression of external pre-S domains. A fusion construct with a nonfunctional signal (s25L), which corresponds in its primary sequence to sigL cleaved by signal peptidase, was used as a control. SigL was N glycosylated in transfected COS cells at both potential sites in pre-S in contrast to s25L or wild-type L, confirming the expected transmembrane topologies of sigL and s25L. Phenotypic characterization revealed the following points. (i) SigL lost the inhibitory effect of L or s25L on secretion of subviral hepatitis B surface antigen particles, suggesting that the retention signal mapped to the N terminus of L is recognized in the cytosol and not in the lumen of the endoplasmic reticulum. (ii) SigL was secreted into the culture medium even in the absence of the major HBV surface protein (S), while release of an L mutant lacking the retention signal was still dependent on S coexpression. (iii) s25L but not sigL could complement an L-negative HBV genome defective for virion secretion in cotransfections. This suggests that the cytosolic pre-S domain, like a matrix protein, is involved in the interaction of the viral envelope with preformed cytosolic nucleocapsids during virion assembly.  相似文献   

4.
Chai N  Gudima S  Chang J  Taylor J 《Journal of virology》2007,81(10):4912-4918
Hepatitis B virus (HBV) replication produces three envelope proteins (L, M, and S) that have a common C terminus. L, the largest, contains a domain, pre-S1, not present on M. Similarly M contains a domain, pre-S2, not present on S. The pre-S1 region has important functions in the HBV life cycle. Thus, as an approach to studying these roles, the pre-S1 and/or pre-S2 sequences of HBV (serotype adw2, genotype A) were expressed as N-terminal fusions to the Fc domain of a rabbit immunoglobulin G chain. Such proteins, known as immunoadhesins (IA), were highly expressed following transfection of cultured cells and, when the pre-S1 region was present, >80% were secreted. The IA were myristoylated at a glycine penultimate to the N terminus, although mutation studies showed that this modification was not needed for secretion. As few as 30 amino acids from the N terminus of pre-S1 were both necessary and sufficient to drive secretion of IA. Even expression of pre-S1 plus pre-S2, in the absence of an immunoglobulin chain, led to efficient secretion. Overall, these studies demonstrate an unexpected ability of the N terminus of pre-S1 to promote protein secretion. In addition, some of these secreted IA, at nanomolar concentrations, inhibited infection of primary human hepatocytes either by hepatitis delta virus (HDV), a subviral agent that uses HBV envelope proteins, or HBV. These IA have potential to be part of antiviral therapies against chronic HDV and HBV, and may help understand the attachment and entry mechanisms used by these important human pathogens.  相似文献   

5.
6.
7.
The biosynthesis and topology of the large envelope protein (L protein) of hepadnaviruses was investigated using the duck hepatitis B virus (DHBV) model, which also allows the study of hepadnavirus morphogenesis in experimentally infected hepatocytes. Results from proteolysis of virus particles and from the analysis of topology and posttranslational modification of L chains synthesized in vivo or in a cell-free system both support the presence of a mixed population of L-protein molecules with their N-terminal pre-S domain located either inside or outside the virus particle. During L biosynthesis and DHBV morphogenesis, pre-S, together with the neighboring transmembrane domain (TM-I), initially remained cytoplasmically disposed and was translocated only posttranslationally. Delayed pre-S translocation into a post-endoplasmic reticulum compartment is also indicated by the absence of glycosylation at a modification-competent pre-S glycosylation site. Major features of L-protein biosynthesis and of the resulting dual topology appear to be conserved between avian and mammalian hepadnaviruses, supporting the model that pre-S domains function in part either as an internal matrix for capsid envelopment or externally as a ligand for cellular receptor binding. However, differences in the mechanisms controlling pre-S translocation were revealed by the results of mutational analyses identifying and characterizing cis-acting determinants in pre-S that delay its cotranslational translocation. Our data from DHBV demonstrate the negative influence of a cluster of positively charged amino acid residues next to TM-I, a motif that is conserved among the avian but absent from mammalian hepadnaviruses. Additional control elements, which are apparently shared between both virus groups and which may serve in chaperone binding, were mapped by deletion analysis in the central part of pre-S.  相似文献   

8.
The duck hepatitis B virus (DHBV) envelope is comprised of two transmembrane (TM) proteins, the large (L) and the small (S), that assemble into virions and subviral particles. Secondary-structure predictions indicate that L and S have three alpha-helical, membrane-spanning domains, with TM1 predicted to act as the fusion peptide following endocytosis of DHBV into the hepatocyte. We used bafilomycin A1 during infection of primary duck hepatocytes to show that DHBV must be trafficked from the early to the late endosome for fusion to occur. Alanine substitution mutations in TM1 of L and S, which lowered TM1 hydrophobicity, were used to examine the role of TM1 in infectivity. The high hydrophobicity of the TM1 domain of L, but not of S, was shown to be essential for virus infection at a step downstream of receptor binding and virus internalization. Using wild-type and mutant synthetic peptides, we demonstrate that the hydrophobicity of this domain is required for the aggregation and the lipid mixing of phospholipid vesicles, supporting the role of TM1 as the fusion peptide. While lipid mixing occurred at pH 7, the kinetics of insertion of the fusion peptide was increased at pH 5, consistent with the location of DHBV in the late-endosome compartment and previous studies of the nonessential role of low pH for infectivity. Exchange of the TM1 of DHBV with that of hepatitis B virus yielded functional, infectious DHBV particles, suggesting that TM1 of all of the hepadnaviruses act similarly in the fusion mechanism.  相似文献   

9.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

10.
It has been suggested that hepatitis B virus (HBV) binds to a receptor on the plasma membrane of human hepatocytes via the pre-S1 domain of the large envelope protein as an initial step in HBV infection. However, the nature of the receptor remains controversial. In an attempt to identify a cell surface receptor for HBV, purified recombinant fusion protein of the pre-S1 domain of HBV with glutathione S-transferase (GST), expressed in Escherichia coli, was used as a ligand. The surface of human hepatocytes or HepG2 cells was biotinylated, and the cell lysate (precleared lysate) which did not bind to GST and glutathione-Sepharose beads was used as a source of receptor molecules. The precleared lysate of the biotinylated cells was incubated with the GST-pre-S1 fusion protein, and the bound proteins were visualized by Western blotting and enhanced chemiluminescence. An approximately 80-kDa protein (p80) was shown to bind specifically to the pre-S1 domain of the fusion protein. The receptor binding assay using serially or internally deleted segments of pre-S1 showed that amino acid residues 12 to 20 and 82 to 90 are essential for the binding of pre-S1 to p80. p80 also bound specifically to the pre-S1 of native HBV particles. Analysis of the tissue and species specificity of p80 expression in several available human primary cultures and cell lines of different tissue origin showed that p80 expression is not restricted to human hepatocytes. Taken together the results suggest that p80 may be a component of the viral entry machinery.  相似文献   

11.
Vaccinia virus A6L is a previously uncharacterized gene that is conserved in all sequenced vertebrate poxviruses. Here, we constructed a recombinant vaccinia virus encoding A6 with an epitope tag and showed that A6 was expressed in infected cells after viral DNA replication and packaged in the core of the mature virion. Furthermore, we showed that A6 was essential for vaccinia virus replication by performing clustered charge-to-alanine mutagenesis on A6, which resulted in two vaccinia virus mutants (vA6L-mut1 and vA6L-mut2) that displayed a temperature-sensitive phenotype. At 31 degrees C, both mutants replicated efficiently; however, at 40 degrees C, vA6L-mut1 grew to a low titer, while vA6L-mut2 failed to replicate. The A6 protein expressed by vA6L-mut2 exhibited temperature-dependent instability. At the nonpermissive temperature, vA6L-mut2 was normal at viral gene expression and viral factory formation, but it was defective for proteolytic processing of the precursors of several major virion proteins, a defect that is characteristic of a block in virion morphogenesis. Electron microscopy further showed that the morphogenesis of vA6L-mut2 was arrested before the formation of immature virion with nucleoid and mature virion. Taken together, our data show that A6 is a virion core protein that plays an essential role in virion morphogenesis.  相似文献   

12.

Background  

Chronic hepatitis B virus (HBV) infection is an important cause of hepatocellular carcinoma (HCC) worldwide. The pre-S1 and -S2 mutant large HBV surface antigen (LHBS), in which the pre-S1 and -S2 regions of the LHBS gene are partially deleted, are highly associated with HBV-related HCC.  相似文献   

13.
The pre-S2-coding region in the hepatitis B virus surface antigen M (P31; pre-S2 + S) protein gene was modified to identify a polymerized-albumin receptor (PAR) domain by deleting restriction fragments or performing site-directed mutagenesis. The modified M protein genes (M-P31x; x = d, e, f, h and i) were cloned into the yeast generalized-expression vector pGLD 906-1 and expressed in Saccharomyces cerevisiae under the control of yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter. The PAR activities of these gene products suggested that the PAR domain is located in the hydrophilic and highly conserved domain in the pre-S2 region (around Leu12 approximately Tyr21). Antibodies specific for a pre-S2 peptide (Phe8 approximately Pro34, subtype adr), which covers the PAR domain, were purified from sera of rabbits immunized with yeast-derived M protein particles having a natural PAR domain. Immune electron microscopy showed that the purified antibodies could aggregate HBV particles. Therefore, it was speculated that the PAR domain overlapped with the dominant virus-neutralizing and virus-protecting epitopes.  相似文献   

14.
Hepatitis B virus (HBV) and woolly monkey hepatitis B virus (WMHBV) are primate hepadnaviruses that display restricted tissue and host tropisms. Hepatitis D virus (HDV) particles pseudotyped with HBV and WMHBV envelopes (HBV-HDV and WM-HDV) preferentially infect human and spider monkey hepatocytes, respectively, thereby confirming host range bias in vitro. The analysis of chimeric HBV and WMHBV large (L) envelope proteins suggests that the pre-S1 domain may comprise two regions that affect infectivity: one within the amino-terminal 40 amino acids of pre-S1 and one downstream of this region. In the present study, we further characterized the role of the amino terminus of pre-S1 in infectivity by examining the ability of synthetic peptides to competitively block HDV infection of primary human and spider monkey hepatocytes. A synthetic peptide representing the first 45 residues of the pre-S1 domain of the HBV L protein blocked infectivity of HBV-HDV and WM-HDV, with a requirement for myristylation of the amino terminal residue. Competition studies with truncated peptides suggested that pre-S1 residues 5 to 20 represent the minimal domain for inhibition of HDV infection and, thus, presumably represent the residues involved in virus-host receptor interaction. Recombinant pre-S1 proteins expressed in insect cells blocked infection with HBV-HDV and WM-HDV at a concentration of 1 nanomolar. The ability of short pre-S1 peptides to efficiently inhibit HDV infection suggests that they represent suitable ligands for identification of the HBV receptor and that a pre-S1 mimetic may represent a rational therapy for the treatment of HBV infection.  相似文献   

15.
16.
17.
Awe K  Lambert C  Prange R 《FEBS letters》2008,582(21-22):3179-3184
The hepatitis B virus L protein forms a dual topology in the endoplasmic reticulum (ER) via a process involving cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain. Here, we show that preS posttranslocation depends on the action of the ER chaperone BiP. To modulate the in vivo BiP activity, we designed an approach based on overexpressing its positive and negative regulators, ER-localized DnaJ-domain containing protein 4 (ERdj4) and BiP-associated protein (BAP), respectively. The feasibility of this approach was confirmed by demonstrating that BAP, but not ERdj4, destabilizes the L/BiP complex. Overexpressing BAP or ERdj4 inhibits preS posttranslocation as does the reduction of ATP levels. These results hint to a new role of BiP in guiding posttranslational polypeptide import into the mammalian ER.  相似文献   

18.
The crystal structure of recombinant hepatitis B virus (HBV) capsids formed by 240 core proteins has recently been published. We wanted to map sites on the surface of the icosahedral 35-nm particle that are important for nucleocapsid envelopment by HBV surface proteins during virion morphogenesis. For this purpose, we individually mutated 52 amino acids (aa) within the N-terminal 140 aa of the 185-aa long core protein displaying their side chains to the external surface of the capsid to alanine residues. The phenotype of the mutations with respect to virion formation was tested by transcomplementation of a core gene-negative HBV genome in transiently cotransfected cells, immunoprecipitation of nucleocapsids from cells and secreted virions from culture media, and detection of the particles by radioactive endogenous polymerase reactions. Thirteen point mutations impeded nucleocapsid detection by endogenous polymerase reactions. Twenty-seven mutations were compatible with virion formation. Among these were all capsid-forming mutations in the upper half of the spike protruding from the particle shell and two additional triple mutations at tip of the spike. Eleven mutations (S17, F18, L60, L95, K96, F122, I126, R127, N136, A137, and I139) allowed nucleocapsid formation but blocked particle envelopment and virion formation to undetectable levels. These mutations map to a ring-like groove around the base of the spike and to a small area at the capsid surface close to the pores in the capsid shell. These residues are candidate sites for the interaction with envelope proteins during virion morphogenesis.  相似文献   

19.
C Sureau  B Guerra    H Lee 《Journal of virology》1994,68(6):4063-4066
The hepatitis delta virus (HDV) envelope contains the large (L), middle (M), and small (S) surface proteins encoded by coinfecting hepatitis B virus. Although HDV-like particles can be assembled with only the S protein in the envelope, the L protein is essential for infectivity in vitro (C. Sureau, B. Guerra, and R. Lanford, J. Virol. 67:366-372, 1993). Here, we demonstrate that the M protein, previously described as carrying a site for binding to polymerized human albumin, is not necessary for infectivity. HDV-like particles coated with the S plus L or the S plus M plus L proteins are infectious in primary cultures of chimpanzee hepatocytes. We conclude that the S and L proteins serve two essential functions in the HDV replication cycle; the S protein ensures the export of the HDV genome from an infected cell by forming a particle, and the L protein ensures its import into a human hepatocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号