首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rh blood group proteins are erythrocyte proteins important in neonatal and transfusion medicine. Recent studies have shed new light on the possible biological function of Rh proteins as members of a conserved family of proteins involved in ammonium transport. The erythrocyte Rh-associated glycoprotein (RhAG) mediates uptake of ammonium when expressed in Xenopus laevis oocytes, and functional studies indicate that RhAG might function as an NH(4)(+)-H(+)-exchanger. To further delineate the functional properties of RhAG, in this study we have expressed RhAG in both a Saccharomyces cerevisiae ammonium-transport mutant (mep1Delta mep2Delta mep3Delta) and a wild-type strain. RhAG was able to complement the transport mutant, with complementation strictly pH-dependent, requiring pH 6.2-6.5. RhAG also conferred resistance to methylamine (MA), a toxic analog of ammonium, and expression in wild-type cells revealed that resistance was correlated with efflux of MA. RhAG-mediated resistance was pH-dependent, being optimal at acid pH. The opposite pH dependence of ammonium complementation (uptake) and MA resistance (efflux) is consistent with bidirectional movement of substrate counter to the direction of the proton gradient. This report clarifies and expands previous observations of RhAG-mediated transport in yeast and supports the hypothesis that ammonium transport is coupled to the H(+) gradient and that RhAG functions as a NH(4)(+)/H(+) exchanger.  相似文献   

2.
Ammonium transporters form a conserved family of transport proteins and are widely distributed among all domains of life. The genome of Nitrosomonas europaea codes for a single gene (rh1) that belongs to the family of the AMT/Rh ammonium transporters. For the first time, this study provides functional and physiological evidence for a rhesus-type ammonia transporter in bacteria (N. europaea). The methylammonium (MA) transport activity of N. europaea correlated with the Rh1 expression. The K(m) value for the MA uptake of N. europaea was 1.8+/-0.2 mM (pH 7.25), and the uptake was competitively inhibited by ammonium [K(i)(NH(4) (+)) 0.3+/-0.1 mM at pH 7.25]. The MA uptake rate was pH dependent, indicating that the uncharged form of MA is transported by Rh1. An effect of the glutamine synthetase on the MA uptake was not observed. When expressed in Saccharomyces cerevisiae, the function of Rh1 from N. europaea as an ammonia/MA transporter was confirmed. The results suggest that Rh1 equilibrates the uncharged substrate species. A low pH value in the periplasmic space during ammonia oxidation seems to be responsible for the ammonium accumulation functioning as an acid NH(4) (+) trap.  相似文献   

3.
The transport of ammonium/ammonia is a key process for the acquisition and metabolism of nitrogen. Ammonium transport is mediated by the AMT/MEP/Rh family of membrane proteins which are found in microorganisms, plants, and animals, including the Rhesus blood group antigens in humans. Although ammonium transporters from all kingdoms have been functionally expressed and partially characterized, the transport mechanism, as well as the identity of the true substrate (NH(4+) or NH(3)) remains unclear. Here we describe the functional expression and characterization of LeAMT1;1, a root hair ammonium transporter from tomato (Lycopersicon esculentum) in Xenopus oocytes. Micromolar concentrations of external ammonium were found to induce concentration- and voltage-dependent inward currents in oocytes injected with LeAMT1;1 cRNA, but not in water-injected control oocytes. The NH(4+)-induced currents were more than 3-fold larger than methylammonium currents and were not subject to inhibition by Na(+) or K(+). The voltage dependence of the affinity of LeAMT1;1 toward its substrate strongly suggests that charged NH(4+), rather than NH(3), is the true transport substrate. Furthermore, ammonium transport was independent of the external proton concentration between pH 5.5 and pH 8.5. LeAMT1;1 is concluded to mediate potential-driven NH(4+) uptake and retrieval depending on root membrane potential and NH(4+) concentration gradient.  相似文献   

4.
Transport characteristics of procainamide in the brush-border membrane isolated from rabbit small intestine were studied by a rapid-filtration technique. Procainamide uptake by brush-border membrane vesicles was stimulated by an outward H(+) gradient (pH(in) = 6.0, pH(out) = 7.5) against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H(+) gradient was subjected to rapid dissipation by the presence of a protonophore, FCCP. An outward H(+) gradient-dependent procainamide uptake was not caused by H(+) diffusion potential. The initial uptake of procainamide was inhibited by other tertiary amines with N-dimethyl or N-diethyl moieties in their structures, such as triethylamine, dimethylaminoethyl chloride, and diphenhydramine, but not by tetraethylammonium and thiamine. Furthermore, procainamide uptake was stimulated by preloading the vesicles with these tertiary amines (trans-stimulation effect), indicating the existence of a specific transport system for tertiary amines. These findings indicate that procainamide transport in the intestinal brush-border membrane is mediated by the H(+)/tertiary amine antiport system that recognizes N-dimethyl or N-diethyl moieties in the structures of tertiary amines.  相似文献   

5.
In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ~50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.  相似文献   

6.
The effects of the Na+ gradient and pH on phosphate uptake were studied in brush-border membrane vesicles isolated from rat kidney cortex. The initial rates of Na(+)-dependent phosphate uptake were measured at pH 6.5, 7.5 and 8.5 in the presence of sodium gluconate. At a constant total phosphate concentration, the transport values at pH 7.5 and 8.5 were similar, but at pH 6.5 the influx was 31% of that at pH 7.5. However, when the concentration of bivalent phosphate was kept constant at all three pH values, the effect of pH was less pronounced; at pH 6.5, phosphate influx was 73% of that measured at pH 7.5. The Na(+)-dependent phosphate uptake was also influenced by a transmembrane pH difference; an outwardly directed H+ gradient stimulated the uptake by 48%, whereas an inwardly directed H+ gradient inhibited the uptake by 15%. Phosphate on the trans (intravesicular) side stimulated the Na(+)-gradient-dependent phosphate transport by 59%, 93% and 49%, and the Na(+)-gradient-independent phosphate transport by 240%, 280% and 244%, at pH 6.5, 7.5 and 8.5 respectively. However, in both cases, at pH 6.5 the maximal stimulation was seen only when the concentration of bivalent trans phosphate was the same as at pH 7.5. In the absence of a Na+ gradient, but in the presence of Na+, an outwardly directed H+ gradient provided the driving force for the transient hyperaccumulation of phosphate. The rate of uptake was dependent on the magnitude of the H+ gradient. These results indicate that: (1) the bivalent form of phosphate is the form of phosphate recognized by the carrier on both sides of the membrane; (2) protons are both activators and allosteric modulators of the phosphate carrier; (3) the combined action of both the Na+ (out/in) and H+ (in/out) gradients on the phosphate carrier contribute to regulate efficiently the re-absorption of phosphate.  相似文献   

7.
The involvement of a Na(+)/H(+) exchanger (NHE) in mediating Na(+) uptake by freshwater fish is currently debated. Although supported indirectly by empirical molecular and pharmacological data, theoretically its operation should be constrained thermodynamically, owing to unfavorable chemical gradients. Recently, there has been an increasing focus on ammonia channels (Rh proteins) as potentially contributing to Na(+) uptake across the freshwater fish gill. In this study, we tested the hypothesis that Rhcg1, a specific apical isoform of Rh protein, is critically important in facilitating Na(+) uptake in zebrafish larvae via its interaction with NHE. Treating larvae (4 days postfertilization) with 5-(N-ethyl-N-isopropyl) amiloride (EIPA), an inhibitor of NHE, caused a significant reduction in Na(+) uptake in fish reared in acidic water (pH ~ 4.0). A role for NHE in Na(+) uptake was further confirmed by translational knockdown of NHE3b, an isoform of NHE thought to be responsible for Na(+)/H(+) exchange in zebrafish larvae. Exposing the larvae reared in acidic water to 5 mM external ammonium sulfate or increasing the buffering capacity of the water with 10 mM HEPES caused concurrent reductions in ammonia excretion and Na(+) uptake. Furthermore, translational knockdown of Rhcg1 significantly reduced ammonia excretion and Na(+) uptake in larvae chronically (4 days) or acutely (24 h) exposed to acidic water. Unlike in sham-injected larvae, EIPA did not affect Na(+) uptake in fish experiencing Rhcg1 knockdown. Additionally, exposure of larvae to bafilomycin A1 (an inhibitor of H(+)-ATPase) significantly reduced Na(+) uptake in fish reared in acidic water. These observations suggest the existence of multiple mechanisms of Na(+) uptake in larval zebrafish in acidic water: one in which Na(+) uptake via NHE3b is linked to ammonia excretion via Rhcg1, and another facilitated by H(+)-ATPase.  相似文献   

8.
The kinetics and energetics of (15)NH (4) (+) uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis were investigated. (15)NH (4) (+) uptake increased with increasing substrate concentration over the concentration range of 0.002 to 25?mM. Eadie-Hofstee plots showed that ammonium (NH (4) (+) ) uptake over this range was biphasic. At concentrations below 100?μM, NH (4) (+) uptake fits a Michaelis-Menten curve, typical of the activity of a saturable high-affinity transport system (HATS). At concentrations above 1?mM, NH (4) (+) influx showed a linear response typical of a nonsaturable low-affinity transport system (LATS). Both transport systems were dependent on external pH. The HATS and, to a lesser extent, the LATS were inhibited by the ionophore carbonylcyanide m-chlorophenylhydrazone (CCCP) and the ATP-synthesis inhibitor 2,4-dinitrophenol. These data indicate that the two NH (4) (+) transport systems of R. irregularis are dependent on metabolic energy and on the electrochemical H(+) gradient. The HATS- and the LATS-mediated (15)NH (4) (+) influxes were also regulated by acetate. This first report of the existence of active high- and low-affinity NH4(+) transport systems in the extraradical mycelium of an arbuscular mycorrhizal fungus and provides novel information on the mechanisms underlying mycosymbiont uptake of nitrogen from the soil environment.  相似文献   

9.
The intra-luminal acidic pH of endomembrane organelles is established by a proton pump, vacuolar H(+)-ATPase (V-ATPase), in combination with other ion transporter(s). The proton gradient (DeltapH) established in yeast vacuolar vesicles decreased and reached the lower value after the addition of alkaline cations including Na(+). As expected, the uptake of (22)Na(+) was coupled with DeltapH generated by V-ATPase. Disruption of NHX1 or NHA1, encoding known Na(+)/H(+) antiporters, did not result in the loss of (22)Na(+) uptake or the alkaline cation-dependent DeltapH decrease. Upon the addition of sulfate ions, the V-ATPase-dependent DeltapH in the vacuolar vesicles increased, but the membrane potential (DeltaPsi) decreased. Consistent with this observation, radioactive sulfate was transported into the vesicles with a K(m) value of 0.07 mM. The transport activity was unaffected upon disruption of the putative genes coding for homologues of plasma membrane sulfate transporters. These results indicate that the vacuoles exhibit unique Na(+)/H(+) antiport and sulfate transport, which regulate the luminal pH and ion homeostasis in yeast.  相似文献   

10.
Li T  Tomimatsu T  Ito K  Horie T 《Life sciences》2003,73(20):2631-2639
The transport characteristics of fluorescein-methotrexate (F-MTX) in isolated brush border membrane vesicles (BBMVs) from rat small intestine were studied. F-MTX uptake in BBMVs was measured by a rapid filtration technique. Our results demonstrated that F-MTX uptake into vesicles was 1) significantly increased under the experimental conditions of an outwardly directed OH(-) gradient or an inwardly directed H(+)gradient, 2) sensitive to temperature, 3) increased with decreasing pH of the incubation buffer, 4) significantly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) at the early stage of the uptake, and 5) significantly inhibited by methotrexate (MTX). Thus, the transport of F-MTX in BBMVs was shown to be mediated in part by the reduced folate transporter (RFC) which was known to transport MTX through the epithelium of small intestine.  相似文献   

11.
The Rhesus (Rh) blood group system is expressed by a pair of 12-transmembrane-domain-containing proteins, the RhCcEe and RhD proteins. RhCcEe and RhD associate as a Rh core complex that comprises one RhD/CcEe protein and most likely two Rh-associated glycoproteins (RhAG) as a trimer. All these Rh proteins are homologous and share this homology with two human non-erythroid proteins, RhBG and RhCG. All Rh protein superfamily members share homology and function in a similar manner to the Mep/Amt ammonium transporters, which are highly conserved in bacteria, plants and invertebrates. Significant advances have been made in our understanding of the structure and function of Rh proteins, as well as in the clinical management of Rh haemolytic disease. This review summarises our current knowledge concerning the molecular biology of Rh proteins and their role in transfusion and pregnancy incompatibility.  相似文献   

12.
The mechanism of ammonium uptake was studied in Pseudomonas aeruginosa, measuring the uptake (transport and metabolism) of [14C]methylammonium (MA). This ammonium analogue was not utilized for growth, but unmetabolized MA was accumulated to intracellular concentrations about 30 times higher than those in the medium. Most of the MA taken up, however, was rapidly metabolized to gamma-N-methylglutamine, which could be removed from the cells by the addition of ammonium. Uptake of MA exhibited distinct optima at pH 7.0 and 35 to 40 degrees C and depended on metabolic energy, as indicated by the inhibitory effect of various metabolic poisons. Growth with ammonium as nitrogen source resulted in the repression of MA uptake, whereas high uptake rates were observed with nitrate or after incubation without nitrogen source. These results suggested that the ammonium/MA uptake system is subject to nitrogen control in P. aeruginosa.  相似文献   

13.
Using [(14)C]methylamine as an analogue of ammonium, the kinetics and the energetics of NH(4)(+) transport were studied in the ectomycorrhizal fungus, Paxillus involutus (Batsch) Fr. The apparent half-saturation constant (K(m)) and the maximum uptake rate (V(max)) for the carrier-mediated transport derived from the Eadie-Hofstee transformation were 180 μM and 380 nmol (mg dry wt)(-1) min(-1,) respectively. Both pH dependence and inhibition by protonophores indicate that methylamine transport in P. involutus was dependent on the electrochemical H(+) gradient. Both long-term and short-term uptake experiments were consistent with regulation of ammonium/methylamine transport processes by the presence of an organic nitrogen source. Analysis of methylamine uptake by different P. involutus isolates revealed no obvious trend in the uptake capacities in relation to N deposition at the collection site. Kinetic parameters were determined in P. involutus/Betula pendula (Roth.) axenic association and in detached mycorrhizal roots isolated from forest sites. Enhanced methylamine uptake in the presence of the fungal symbiont was demonstrated. Homogeneous V(max) values were found for axenic and detached mycorrhizas, whereas K(m) values showed greater variations.  相似文献   

14.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

15.
Roz N  Rehavi M 《Life sciences》2003,73(4):461-470
Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.  相似文献   

16.
17.
The H(+)-coupled transporter hPepT1 (SLC15A1) mediates the transport of di/tripeptides and many orally-active drugs across the brush-border membrane of the small intestinal epithelium. Incubation of Caco-2 cell monolayers (15 min) with the dietary phosphodiesterase inhibitors caffeine and theophylline inhibited Gly-Sar uptake across the apical membrane. Pentoxifylline, a phosphodiesterase inhibitor given orally to treat intermittent claudication, also decreased Gly-Sar uptake through a reduction in capacity (V(max)) without any effect on affinity (K(m)). The reduction in dipeptide transport was dependent upon both extracellular Na(+) and apical pH but was not observed in the presence of the selective Na(+)/H(+) exchanger NHE3 (SLC9A3) inhibitor S1611. Measurement of intracellular pH confirmed that caffeine was not directly inhibiting hPepT1 but rather having an indirect effect through inhibition of NHE3 activity. NHE3 maintains the H(+)-electrochemical gradient which, in turn, acts as the driving force for H(+)-coupled solute transport. Uptake of beta-alanine, a substrate for the H(+)-coupled amino acid transporter hPAT1 (SLC36A1), was also inhibited by caffeine. The regulation of NHE3 by non-nutrient components of diet or orally-delivered drugs may alter the function of any solute carrier dependent upon the H(+)-electrochemical gradient and may, therefore, be a site for both nutrient-drug and drug-drug interactions in the small intestine.  相似文献   

18.
Renal ammonium (NH3 + NH4+) transport is a key process for body acid-base balance. It is well known that several ionic transport systems allow NH4+ transmembrane translocation without high specificity NH4+, but it is still debated whether NH3, and more generally, gas, may be transported by transmembrane proteins. The human Rh glycoproteins have been proposed to mediate ammonium transport. Transport of NH4+ and/or NH3 by the epithelial Rh C glycoprotein (RhCG) may be of physiological importance in renal ammonium excretion because RhCG is mainly expressed in the distal nephron. However, RhCG function is not yet established. In the present study, we search for ammonium transport by RhCG. RhCG function was investigated by electrophysiological approaches in RhCG-expressing Xenopus laevis oocytes. In the submillimolar concentration range, NH4Cl exposure induced inward currents (IAM) in voltage-clamped RhCG-expressing cells, but not in control cells. At physiological extracellular pH (pHo) = 7.5, the amplitude of IAM increased with NH4Cl concentration and membrane hyperpolarization. The amplitude of IAM was independent of external Na+ or K+ concentrations but was enhanced by alkaline pHo and decreased by acid pHo. The apparent affinity of RhCG for NH4+ was affected by NH3 concentration and by changing pHo, whereas the apparent affinity for NH3 was unchanged by pHo, consistent with direct NH3 involvement in RhCG function. The enhancement of methylammonium-induced current by NH3 further supported this conclusion. Exposure to 500 microm NH4Cl induced a biphasic intracellular pH change in RhCG-expressing oocytes, consistent with both NH3 and NH4+ enhanced influx. Our results support the hypothesis of a specific role for RhCG in NH3 and NH4+ transport.  相似文献   

19.
The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.  相似文献   

20.
We investigated the contribution of the Na(+)/L-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of L-carnitine was observed in the presence of a Na(+) gradient. The uptake of L-carnitine was of high affinity (K(m)=21 microM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for L-carnitine uptake. Therefore, we confirmed the Na(+)/L-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and L-carnitine uptake. The presence of an outward H(+) gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of L-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled L-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na(+)/L-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H(+)/organic cation antiporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号